
Maria Curie-Skłodowska University Press

Selected Topics in
Applied Computer Science

Jarosław BylinaEDITED BY

vol. I

Selected Topics in
Applied Computer Science

Maria Curie-Skłodowska University Press
Lublin 2021

Selected Topics in
Applied Computer Science

Jarosław BylinaEDITED BY

vol. I

Maria Curie-Skłodowska University Press
ul. Idziego Radziszewskiego 11, 20-031 Lublin, Poland
tel. +48 81 537 53 04
www.wydawnictwo.umcs.eu
e-mail: sekretariat@wydawnictwo.umcs.lublin.pl

Sales Department
tel./fax +48 81 537 53 02
Online bookstore: www.wydawnictwo.umcs.eu
e-mail: wydawnictwo@umcs.eu

© by Maria Curie-Skłodowska University Press, Lublin 2021

ISBN 978-83-227-9530-9

Reviewers
Marcin Blachnik
Krzysztof Grochla
Dariusz Mikołajewski
Mateusz Nowak
Piotr Oleszczuk
Marek Pałkowski

Cover and front page design
Krzysztof Trojnar

Typese�ng
Jarosław Bylina
Anna Nosalewicz

Cover illustra�on: pixabay.com, freepik.com

Contents

Preface . 7

A Brief Review on Supervised Machine Learning . 9

Automatic Syllable Repetition Detection Methods in Continuous
Speech. 43

Exploring Recent Advancements of Transformer Based Architectures
in Computer Vision . 59

Automating the Comparison of Areas and Data of Administrative
Units From Different Periods on the Example of Poland (1937 and
2019) . 77

Some Computational Aspects of Graph-Based Cryptography 95

DNA Based Cryptographic Key Storage System With a Simple and
Automated Method of Primers Selection . 111

Comparative Analysis of Selected Anthropomorphic Grippers Con-
structions . 129

Data Mining Procedures in the Oil Production Prediction for Gas
Lifted Wells . 141

5

Spatial Databases and Their Use in Spatial Web Applications Based
on the Exemplary Internet Service for Same Chosen Objects in the
Old City in Zamość . 155

Nested Loop Transformations on Multi- and Many-Core Computers
With Shared Memory . 167

Functioning of Transnational Civil Society Organisations (TCSOs) in
Cyberspace . 187

Applying Ethics to Autonomous Agents . 199

Assessment of Attractiveness and Trust in Relation to Personality
Traits — Literature Review and Research Proposal . 223

Liquid State Machines for Real-Time Neural Simulations . 233

Author index . 247

6

Preface

The development of computer science has been growing more and more dynamic
since several decades. Nowadays, this progress is marked by a number of trends.
Just to name a few — artificial intelligence (most prevalent in its machine learning
variety), cybersecurity, bioinformatics. However, the problems of general purpose
algorithms and the creation of advanced information systems are still being investi-
gated. All these issues create new opportunities, but generate many research ques-
tions. This book presents the latest research conducted at Marie Curie-Skłodowska
University in Lublin — or in collaboration with its staff — in the broadly under-
stood field of computer science.

Subsequent chapters deal with:

• machine learning and automation of detection in various data sets;

– A Brief Review on Supervised Machine Learning

– Automatic Syllable Repetition Detection Methods in Continuous Speech

– Exploring Recent Advancements of Transformer Based Architectures in
Computer Vision

– Automating the Comparison of Areas and Data of Administrative Units
From Different Periods on the Example of Poland (1937 and 2019)

• modern cryptography;

– Some Computational Aspects of Graph-Based Cryptography

– DNA Based Cryptographic Key Storage System With a Simple and Au-
tomated Method of Primers Selection

• industrial computer science issues;

– Comparative Analysis of Selected Anthropomorphic Grippers Construc-
tions

– Data Mining Procedures in the Oil Production Prediction for Gas Lifted
Wells

• more traditional approaches to data processing — like (geographical) data
base systems and parallelization;

– Spatial Databases and Their Use in Spatial Web Applications Based on
the Exemplary Internet Service for Same Chosen Objects in the Old City
in Zamość

7

– Nested Loop Transformations on Multi- and Many-Core Computers
With Shared Memory

• social quations related to information technology;

– Functioning of Transnational Civil Society Organisations (TCSOs) in
Cyberspace

• ethical/philosophical issues of artificial inteligence;

– Applying Ethics to Autonomous Agents

• some research on the functioning of the human brain and nervous system and
its simulation possibility.

– Assessment of Attractiveness and Trust in Relation to Personality Traits
— Literature Review and Research Proposal

– Liquid State Machines for Real-Time Neural Simulations

The book is addressed to all those who want to become familiar with the areas
of research conducted by employees of Maria Curie-Skłodowska University (in par-
ticular, the Institute of Computer Science at the Faculty of Mathematics, Physics
and Computer Science). Thanks to concise and clear descriptions of many differ-
ent issues related to the broadly understood computer science, it will be especially
useful for IT/CS students and scientists as well as research staff of enterprises.

The book was created becasue of the huge commitment of its co-authors, review-
ers, editors. Many employees of the Institute of Computer Science at the University
worked on its final shape. I would like to express my deepest thanks to all of them,
especially to Prof. Przemysław Stpiczyński, who encouraged all of us to prepare a
contribution to this volume.

Jarosław Bylina
jaroslaw.bylina@umcs.pl

8

A Brief Review on Supervised
Machine Learning

Monika Piekarz∗

1 Introduction

What is Machine Learning? An area of artificial intelligence dedicated to al-
gorithms that improve automatically through experience, i.e. exposure to data.
Simply put, the machine perceives the pattern and tries to imitate it in some way,
directly or indirectly. This comes down to two main types of machine learning:
supervised and unsupervised. Supervised machine learning is a direct imitation of
a pattern that exists between two data sets, the input set we want to convert to the
output set. For example, one set containing data from a weather sensor, which we
will use to predict the information from the second set, which is the probability of
rain or snow. Unsupervised learning also transforms one data set into another, but
the data set to which we transform the input is not known to us beforehand. So
there is no correct answer here for which we are trying to get a duplicate model. Un-
supervised learning is more about finding a pattern in the data and showing it. An
example would be a cluster analysis of a data set. Cluster analysis transforms the
sequence of observations into a sequence of labels groups. If 5 groups are discovered,
the labels will typically range from 1 to 5. Other uses for unsupervised learning
are: detecting anomalies, i.e. cases that are significantly different from the rest,
assuming we do not know the characteristics that would make the difference [19],
or autocode on detecting abstract features by deep neural networks, e.g. shapes
visible in coded images or generating new images that are some combination of
training images [5]. In other words, supervised learning requires a data set with a
set of valid solutions, the training algorithm analyzes both sets to associate one set
with the other and applies it later to unknown data to predict a correct answer. In
unsupervised learning we also have a data set that is analyzed, but here there are
no correct answers that we would like to predict. It is just about discovering the
relationship between the analyzed data. Next, we will mainly talk about supervised
learning.

Supervised and unsupervised machine learning is just one of the possible divi-
sions that we can observe in machine learning. When we look at the development
of machine learning research from its first seeds, we see that there are very different
forms of the process involved. It is even difficult to introduce a full, unambiguous

∗Corresponding author — monika.piekarz@mail.umcs.pl

9

10 M. Piekarz

and complete division. The types of learning systems can be classified according to
many criteria, resulting in different divisions. The most basic of them are: meth-
ods of representing knowledge and skills, the way knowledge or skills are used, the
source and form of training information, the mechanism for acquiring and improv-
ing knowledge or skills.

Methods of representing knowledge are generally related to the technique we
will use to solve the problem. We can distinguish here: decision trees, decision
rules, predicate logic clauses, probability distributions, finite automata transition
functions, formal grammar rules or regression function parameters.

If we are talking about the method of using knowledge, i.e. about the task fac-
ing a learning machine, then regression is one of the most typical tasks, where the
hypothesis is a function and here we can distinguish classification (the result ob-
tained is discrete information) and regression (the result obtained takes the form of
a continuous) problems, which will be discussed in more detail in the next chapter.
A hypothesis can also take the form of a rule that divides examples, then we talk
about the so-called partitioning models. The machine learning algorithms used here
are: decision trees, decision trees forest, enhanced decision trees. These algorithms
can also be used for classification and regression.

The last of the mentioned criteria: knowledge acquisition mechanism — here
we can distinguish: linear and non-linear regression, artificial neural networks, de-
cision tree learning, Bayesian learning, predicate calculus, finite automatons and
others. We’ll take a closer look at the first to of them by discussing regression and
classification problems.

The presented proposals of the classification of learning systems are to some
extent orthogonal, i.e. they can be used independently, although sometimes the de-
cision regarding one of the criteria limits the decision-making possibilities regarding
other criteria. Each of these criteria breaks the learning models into groups that
have some overlap. Making a systematic classification of the field of machine learn-
ing seems unlikely at the moment, as the field did not develop systematically.

2 The idea of supervised machine learning

We’ll start by establishing the terminology. An example is an observed object
of interest. A feature is an input variable that is used to characterize the example.
Let xi denote the input variables (vector of features) and yi denote the output
(target) variable. The pair (xi, yi) forms a single example. Let X be the set of
values of the input variables, and Y be the set of values of the output variable. A
hypothesis is a function h that maps the set of features xi into some target yi.

In supervised machine learning we have a set of examples, called training set,
described by certain features xi and for which we know the result of interest yi
described as pairs (xi, yi) (we will skip indexes where they are not necessary for
proper interpretation of the record). For example, (xi, yi) represent a set of weather
conditions described by the atmospheric pressure and air temperature xi and the
corresponding result describing the probability of rain yi. The machine learning
algorithm analyzes this data and its goal is to converge to the best as possible

A Brief Review on Supervised Machine Learning 11

hypothesis h which returns the values of the output variable based on the values
of the input variables:

h : X → Y

Possible hypotheses create a hypotheses space (bias) and the task of the machine
learning algorithm is to find in this space the hypothesis closest to the target
function f : X → Y which is mostly unknown to us because we only have a sample
of data included in the training set. Therefore, we cannot use f to judge how well
our learning algorithm has performed. To evaluate the model we need to use a
test data set. Training and test data sets must be separate, i.e. the training data
cannot be used for model evaluation even once, and the test data cannot be used
for training even once. From the hypothesis it is expected to be capable of dealing
with examples which were never seen before.

The algorithm analyzes the training data to detect the relationship between
the input and output variables. These data are analyzed many times, verifying
various hypotheses h. The comparison of the hypotheses found by these algorithms
requires the definition of a loss (error) function l, which determines the distance
between the prediction results ȳi and the actual values of the target variable yi.
Using the loss function on the training set, we can calculate the so-called training
error Remp(h) = 1

n

∑n
i=1 l(xi, yi, h). This error is called empirical error. It is the

mean prediction error for training data set, n is the number of examples in training
set. We can always limit the training error to zero. It is enough for the algorithm
to remember all training data, of which there is always a finite amount. Our goal
is to minimize the (real) test error computed based on data which the algorithm
did not see during the learning process, i.e. the average prediction error for the test
data set. This error is called a generalization error.

The errors can be an underestimation or overestimation of the resulting variable.
Both types of errors should be taken into account, we can do it by counting the
cases when the prediction was different from the target variable or by counting the
sum of the absolute values of errors for individual examples or the sum of their
squares. Here are the three most common loss functions used to evaluate prediction
errors:

l0−1(xi, y − i, h) =

{
1, if h(xi) 6= yi
0, otherwise (1)

labs(xi, y − i, h) = |h(xi)− yi| (2)

lsqr(xi, y − i, h) = (h(xi)− yi)2 (3)

In [3] we can read that the goal of machine learning is for a given lost function
l and a sample of D selected from the P population with an unknown distribution
to find the h function with the smallest expected error ε for the P population with
respect to the lost function l.

The presented idea is most easily reflected by the regression model, whose task
is discover the relationship between the input variables and the output variable
expressed by the hypothesis h. The simplest hypothesis of a regression model is
based on the assumption of a linear relationship between the input variables and
the output variable. So, assuming we have one output variable, we are looking for
a hypothesis of the following form:

yi = h(xi) = b0 + b1xi

12 M. Piekarz

where the intercept b0 is the value of the variable yi for xi = 0 and the regression
coefficient (slope) b1 determines by how much the value of the variable yi changes
with the change of the variable xi. Such a model is called a linear regression model.

In practice, the value of the output variable is computed from multiple input
variables, so our hypothesis will take the following form:

yi = h(xi) = b0 + b1xi1 + b2xi2 + . . .+ bkxik (4)

In 1908, Karl Pearson called such a linear regression model multiple linear regres-
sion.

How do we proceed to find the right hypothesis h for our data? We can choose
a certain hypothesis h (i.e. determine some b0 and b1 if we decide to apply linear
regression assuming that we have one feature x describing the resulting variable y
in our model), and then check how wrong we are and then correct our choice b0
and b1 so that the next hypothesis h′ adopted by us fits better with data, that is,
less wrong. To check how wrong we are we need a lost function l. One of the most
frequently used lost is lsqr function, so to compute empirical error and evaluate
regression models is often used the mean square error (MSE). For one feature of x
and n elements in the data set, the mean square error is as follows:

Remp(b) =
1

n

n∑
i=1

(b0 + b1xi − yi)2 (5)

In the figure 1, we have a graphical illustration of the MSE for predictions range
from −50 to 50, the target value is 10.

Figure 1: When using the lost function lsqr, one big mistake costs the model much
more than many small mistakes. Consider 10 examples. If the error of one example
was 50 and the error for the remaining 9 cases was 0, then the mean square error
would be 250. If the error for all 10 examples was 2, then the mean square error
would be 4

A Brief Review on Supervised Machine Learning 13

This error increases with the square of the difference between the predicted
and target values of the output variable. This means that the model will learn
faster from large errors. An additional benefit of the MSE is that it has only one
minimum, the global minimum. The lack of local minima greatly simplifies finding
the global minimum. Overall, we want to minimize the error for our data set. The
derivative is a measure of the rate of change of a function’s value in relation to the
smallest changes in its argument. The derivative represents the slope of the curve
at a given point. This means that we can find the value of the MSE lower than the
current value by moving in the opposite direction to the sign of the derivative. The
derivative of the MSE should be calculated for all parameters of the model. In this
way we will obtain a gradient of the lost function, denote it with the symbol ∇.

∇Remp(b) =

(
∂Remp(b)

∂b0
, . . . ,

∂Remp(b)

∂bk

)
(6)

initialization value of b

optimal value of b

Figure 2: High learning coefficient

How is the learning process going? Initially, the parameter values are random.
For these values, the empirical error and its gradient are calculated. Then the pa-
rameter values are changed towards the fastest gradient descent (eq. 7). The learn-
ing coefficient λ (another model hyperparameter) controls how many parameter
values are changed at one time. A sufficiently low learning coefficient guarantees
finding the minimum cost function, although it extends the learning process. A
higher learning coefficient shortens learning but increases the risk of not finding
the minimum lost function by overshooting the minimum (fig. 2). The method of
optimizing the learning process has a direct impact on the speed of learning and
indirectly on its result [2]. Training data can include millions of examples described
by hundreds of features. Machine learning usually requires the repetition of sev-
eral hundred to tens of thousands of cycles, i.e. multiple counting of the empirical
error and its gradient for all examples from a data set, which may require large

14 M. Piekarz

computing power and large memory, making training completion possible only for
high learning coefficients.

The basic version of the fastest gradient descent method, Bath Gradient De-
scent, is to update the parameter values based on the gradient of the empirical
error calculated for all examples from the data set, followed by a one-time update
of all parameters:

b′ = b− λ∇Remp(b) (7)

These two operations are called the cycle or the epoch.
This method guarantees finding the minimum of the MSE if the learning rate

is small enough for problems characterized by a linear relationship between the
values of the input features and the output variable. However, we must remember
that the problem we are interested in does not always have to be described by
such a simple relationship between the values of the input features and the output
variable, more on that on page 23.

The stochastic gradient descent (STD), calculates a gradient based on one ex-
ample (xi, yi) randomly selected from a data set in a given cycle.

b′ = b− λ∇(b0 + b1(xi)− yi)2 (8)

The gradient of the lost function calculated in this way is not very stable, its
values for subsequent cycles may be completely different. In general, it turns out
that introducing an element of randomness prevents learning interruption in the
local minimum of the function. This method significantly reduces the learning time
by updating the method parameters just on the basis of one example. Often we
deal with a situation where the direction of parameter changes can be correctly
determined on the basis of the gradient determined for one example. Then it takes
us unnecessarily time to evaluate all the other examples in the same cycle. Another
modification is the fastest gradient descent method for a mini group, Mini-Bath
Gradient Descent. It combines the advantages of both of the above methods, deter-
mining the value of the gradient of the lost function from a small subset of examples
from the data set. The size of this subset controls the hyperparameter — batch
size g. The higher the value of g, the slower the learning process.

b′ = b− λ∇1

g
Σg

i=1(b0 + b1(xi)− yi)2 (9)

It is widely believed that this modifications give the best learning outcomes [6].

3 Data preparation
When we start working with the self-learning algorithm, there are four tasks to

be done:

1. Preparation of data that is undoubtedly the most important in machine learn-
ing.

2. Selecting the model/algorithm.

A Brief Review on Supervised Machine Learning 15

3. Carrying out the learning process.

4. Model evaluation, which will tell us if we have achieved success or if the
previous steps should be repeated.

Data preparation consists of two steps: data selection and data transformation.

3.1 Data selection

Machine learning algorithms extract information hidden in data in several ways.
The methods used by these algorithms have various limitations that can most
effectively be overcome by using more and better quality data for training [4]. The
data used must be in the form of a table and arranged so that the rows represent
single examples and the columns of the values of individual variable [24].

After organizing the data, analyze the individual variables. We divide the vari-
ables into numerical (quantitative) and categorical (qualitative). Numeric variables
are variables of such types as: bool, int, float, data, i.e. variables with only numer-
ical values. Due to the distribution, numerical variables are divided into discrete
(finite set of values) and continuous (infinite set of values). Numeric variables can
be compared with each other, the distance between them can be determined, arith-
metic operations can be performed. Categorical variables are variables of other
types, mainly of the text type. The power of the collection of their values is always
limited. Ordinal categorical variables are those whose values can be compared with
each other, the rest are regular categorical variables. We cannot perform arithmetic
operations on categorical variables or determine the distances between them. In or-
der to evaluate the type of a variable, one needs to understand its meaning, e.g.
the class variable taking the values: 1, 2, 3 is a discrete numeric variable. If one
takes into account that it describes the class of the purchased train compartment,
then it should be considered an ordinal categorical variable.

Understanding the data starts with getting to know the individual variables.
The easiest way to do that is to know the descriptive statistics. Some are the same
for numerical and categorical variables, some have the same meaning but they are
counted differently, e.g. range, and still others can be determined only for numerical
variables, e.g. mean.

The distribution of the values of numerical variables is described by ten main
statistics:

• place of the greatest concentration — measures of central tendency: median,
arithmetic mean and mode;

• value differentiation — measures of dispersion: range, interquartile range,
variance, standard deviation and coefficient of variation;

• comparison of the shape of the distribution of the variable with the nor-
mal distribution — measures of symmetry of the distribution: skewness and
kurtosis.

Categorical variables are assessed using frequency tables and histograms.

16 M. Piekarz

By measuring the entropy of a variable, it is possible to evaluate its usefulness in
the case of participatory models. Entropy is a measure of the information contained
in [21].

Missing data is also a big problem because it has to be completed either by
providing information about it from other sources or by supplementing it with
substitute values, e.g. 0, NULL values or an empty string depending on the variable.
Sometimes a variable that has a lot of data missing needs to be removed because
it becomes useless.

It may also be important to present the data in charts. Although statistics
provide us with knowledge about the data, they do not contain complete informa-
tion and may be misleading. This problem is illustrated by the example given by
Francis Anscombe [1]. He considered four data sets with almost identical statistics
(the arithmetic mean of variable X equal to 9 and variable Y equal to 7.5, and the
standard deviation of variable X equal to 11 and variable Y equal to 4.125). Each
of these four sets has the same linear regression model: y = 3 + 0.5x, a correlation
coefficient of 0.816 and a coefficient of determination R2 of 0.666. On the other
hand, the scatter plots of these sets show how much they differ from each other
(fig. 3).

Figure 3: The points represent the data, the straight line represents the regression
model. Source: https://commons.wikimedia.org/wiki/File:Anscombe.svg

Examining the data in the graphs is the more important the more the distri-
bution of the variable deviates from the normal distribution. Especially if it has a
non-unimodal distribution. For example, if it has a bimodal distribution, and the
most common values are extreme, e.g. 5 and 100, the mean value and median will
not matter, they will not represent a typical case, as there are two typical cases in
such a set.

A Brief Review on Supervised Machine Learning 17

The collected information about the data will allow us to identify and solve
problems with their quality. First of all, remove the variables which we are sure
will not be useful, that is, variable with unique values as identifiers, invoice numbers,
PECEL, NIP. Failure to remove them may result in an excessive fit of the model to
the training data, who will learn to recognize the value of the result variable based
on unique information that will never be repeated in the test data set, instead
of looking for a general relationship between the input variables and the result
variable that will also appear in the test data. Remove as well the variables with
only one value, variables with the majority of missing values.

The greatest benefit of statistical data analysis is the ability to assess its rep-
resentativeness. Knowing the central tendency and distribution of values, we can
judge whether they are as expected. This assessment is best done in a discussion
with an expert in the field.

It is important that our sample of data accurately represents the entire popu-
lation. In any case, the model will learn fictitious, sample-based but not real-world
relationships between the data. Contrary to popular belief, simply increasing the
sample does not always prevent us from doing so. There is a rule in the statistics
that if the examples were collected in specific conditions, the sample should not
exceed 10% of the population. This is because more examples will more accurately
reflect local characteristics. The ideal situation would be to select randomly from
the entire population. This means that each case should have the same, non-zero
chance of being sampled.

However, if the sample is representative, more examples lead to better learning
outcomes due to convergence to actual distribution. As the sample increases, the
distribution of the values of the variables changes until the distribution is identical
to the distribution of the entire population.

Another very important element that should be noted is the correlation between
the variables. This is so important because machine learning is about looking for
relationships between the input variables and the result variable.

Two variables are correlated with each other if knowing the value of one variable
helps in determining the value of the other variable. The stronger the correlation,
the better we can predict the value of one variable from the value of the other.
The output variable is also called dependent. This means that the output variable
should be correlated with the input variables.

On the other hand feature selection, by removing correlated input variables
is an effective way to simplify models, improve their quality and reduce learning
time [13]. Removing unhelpful variables is important because with each additional
variable the number of possible combinations of their values increases significantly.
The number of possible combinations of a set of n variables is equal to the sum of the
number of combinations of 2-element, 3-element, ..., n-element. We do not consider
single-element combinations because we are not interested in the correlation of the
variable with itself. And so, 4 variables give 11 ways of juxtaposing them, 8 — 247
ways, and 16 — 55371 ways.

In addition, there is also a problem with the number of variables called the curse
of dimensionality. In machine learning we have a finite number of data samples in a
multidimensional feature space with each feature having a range of possible values.
We should provide several samples in the training set with each combination of the

18 M. Piekarz

value of the input variable, so the more features we take into account, the more
training data we need.

Suppose we have 10 examples and each variable can take values from 0 to 10. If
we have a one-dimensional variable x, the examples can be illustrated as line points
in the range [0, 10], and their position will correspond to the value of x. Suppose
we have the second variable y. Now we need to put our sample points on the plane
in the places defined by the (x, y) value pairs. So the size of our space has increased
from 10 to 100 (102 = 100). This will increase the distance between the points.
After adding another variable, the positions of the points will be determined by
the three (x, y, z) coordinates and the size of the space will increase to 1000, which
will greatly increase the distance between the points, of which there are still 10.

There is another reason why increasing the dimensions can make easy-to-solve
problems in spaces with a small number of dimensions more difficult. For example,
let’s take ten equally spaced points. In one-dimensional space, each of these points
will have two equally distant closest neighbors. In two-dimensional space, the num-
ber of nearest neighbors of each point increases to 4, in three-dimensional space to
6, and so on. By increasing the number of dimensions we increase the number of co-
ordinates of points and the number of nearest neighbors, if these points are equally
spaced from each other, their number is twice the number of coordinates. Thus, in a
20-dimensional space, a point will already have 40 neighbors. This is a problem es-
pecially for machine learning algorithms based on comparing the distance between
points, e.g. k nearest neighbors [25] or the k-means clustering algorithm [10, 18].

Given a fixed number of training samples, the predictive power of the model first
increases with the number of features (dimensions) used and then decreases [12],
which is known as the Hughes effect or the peak effect [11].

3.2 Data transformation

The effectiveness of the various methods of optimizing the learning process
strongly depends on the training data. For example, the steepest gradient training
process is most effective for data that has an average of 0; decision tree splitting
methods favor categorical variables with a greater number of states; the loss func-
tion lsqr is very sensitive to outliers. Data transformation aims to adapt them
to knowledge representation algorithms, learning optimization methods and loss
functions.

We distinguish five areas of data transformation.

3.2.1 Coding

The easiest way to process is numerical variables, we have many mathematical
and statistical methods to operate on them. Hence, sometimes it is worth coding
categorical variables as numeric. Some algorithms, especially those used in regres-
sion methods, even require only numerical variables.

• Most often categorical variables are coded with the one-hot encoding method.
It consists in replacing a categorical variable with as many binary variables
(so-called dummy variables) as many as many states per a categorical vari-
able. For a given example, only one of the variables created in this way takes

A Brief Review on Supervised Machine Learning 19

the value 1 — the one that represents the actual state of the coded vari-
able, the value of the remaining ones is set to 0. Coding with this method
does not require special knowledge, it can be performed automatically and
does not change the state distribution of the original variable. However, its
disadvantage is that it increases the number of input variables, especially in
the case of categorical variables assuming many states. Another disadvantage
is that the less frequent states will be represented by variables taking the
value 1 very rarely, so that the usefulness of these variables for the model
will be negligible. Therefore, before using this method, the variables should
be generalized.

• We can also simply replace categorical variables with numbers, this way the
new variable will take as many values as the states have the original variable
but they will be numbers, this method is called state encoding. When using
this method, we need to know that we are introducing to the model additional
new false information about the ordering of states that may worsen its quality.
State encoding can also be applied to ordinal variables.

3.2.2 Generalization

A large number of states of a categorical variable can be a problem as it may
mean that some of them are very rare, so rare that the training data set may not
contain combinations of these states with other typical values of other variables. We
could remove such states, but in order not to lose information, the generalization
of rarely occurring states is more often used, i.e. we replace many states with one.
Often these rare states are the result of errors, such as typing or writing the same
information in different forms.

3.2.3 Rounding

We round to decimals, units, hundreds, etc, thus frequently changing the unit
of the variable. This is a similar process to generalization but applies to numerical
variables. This leads to replacing the continuous variable (infinite set power) with a
discrete variable (finite set power). Such a change simplifies the model and reduces
the risk of its overfitting, as discussed in section 5. Variables that are expressed in a
unit so small that there are concerns about measurement errors should be rounded.

3.2.4 Discretization

The reduction of the number of values of a numerical variable consists in its
transformation into a categorical ordinal variable. For this purpose, the indicated
ranges of values of the original variable are assigned to new states. Discretization is
a transformation that can significantly change the distribution of a variable’s value
and reduce the amount of information contained in it. The three most popular
discretization methods:

• division into fixed width intervals, here we try to keep the original variable
distribution,

20 M. Piekarz

• division into different ranges, here we try to keep the entropy of the variable,

• division into ranges with defined boundary values, this division is used to
introduce knowledge from the field of the experiment to the model.

3.2.5 Scaling

Scaling a numeric variable can be to reduce these variables to a common scale,
often to a range of values between 0 and 1. It can also be aimed at changing
the distribution of the variable, for example reducing it to a standard natural
distribution. Some machine learning algorithms are very sensitive to differences in
variable scales, such as artificial neural networks that automatically scale input
variables by default, or k-means clustering algorithms that favor variables with a
large range at the expense of variables with a small range. Scaling methods:

• Min-Max method

x′i =
xi −min(xi)

max(xi)−min(xi)

This way we get values from 0 to 1 or from −1 to 1 if there were negative
values and we dock the original distribution. This method is sensitive to
outliers.

• The IQR method consists in replacing the lowest value with the first in-
terquartile, and the range with a quartile range. It is based on the difference
between the 75th and 25th percentiles.

x′i =
xi −Q1(xi)

Q3(xi)−Q1(xi)

This is the better method for data with outliers.

• Logarithmic scaling — it is used to flatten the distribution of variables as-
suming outliers. Scaled variables cannot take negative values.

x′i =
ex

1− ex

• Standardization — transforms the variable so as to obtain a variable with a
normal distribution (average 0 and standard deviation 1)

x′i =
xi − x̄i
σ

After standardization, values less than the mean will have negative values,
and values greater than the mean will be positive. Usually standardized values
are in the range from −4 to 4.

A Brief Review on Supervised Machine Learning 21

4 Review of selected methods of supervised ma-
chine learning

In this section, we will focus on a more detailed approximation of a few selected
methods of supervised machine learning, paying attention to their application to
two types of problems that we can consider when talking about machine learning:
classification and regression. Although, as we wrote at the beginning of this chapter,
we have many methods of supervised machine learning, we will focus on two, namely
the widely used artificial neural network and linear regression models. We will also
discuss methods for evaluating the classification and regression models. Finally, we
will introduce the applications of the Python methods discussed here.

Classification is the oldest and most widely used method of supervised ma-
chine learning. The purpose of the classification is, for a given set of training data
(x1, . . . , xk, y) to find the classifier hypothesis h : X → Y , which assigns the class
y ∈ Y to the object x ∈ X. The data must be in the form of a vector of input
variables x described by the output variable y. Input variables can be continuous
numeric or discrete. The output variable is discrete and takes at least two states.
The states of the output variable are called class labels, or classes for short. If the
result variable takes two states then it is a binary classification, if it has more states
it is a multi-class classification.

Regression is understood as a supervised learning method that consists in find-
ing correlations hidden in the data (x1, . . . , xk, y) to find the hypothesis h : X → Y
in order to most accurately estimate the output variable y which is continuous
numeric in this case.

4.1 Artificial neural network

Artificial intelligence was inspired by brain research conducted in the 1940s by
two neuroscientists: Warren McCulloch and Walter Pist. The basic cell of the brain
is the neuron. Neurons transmit signals to each other via synapses. The counterpart
of a neuron in an artificial neural network is a node, which is an independent unit of
computing. It multiplies the input variables by their weights (parameters) and then
sums them up. The value thus obtained is passed to the activation function f . The
model of the artificial neural network node is shown in the figure 4, at the same
time it is the simplest model of the artificial neural network — the Perceptron.
Perceptron was proposed by Rosenblat in 1957 [20]. Perceptron is a model of a
linear binary classifier, i.e. he can find the boundary between two linearly separable
(separable by one: a straight line, a plane, and in spaces with more dimensions —
a hyperplane) classes of examples [15] and consists of one McCulloch-Pist neuron
(the first mathematical model of an artificial neural network neuron).

A node has multiple inputs and one output. The output value is calculated as
the weighted sum of the input values.

ŷi = f

 k∑
j=1

wjxi,j + w0

22 M. Piekarz

The input signals are 0 or 1 and the activation function is a threshold function
(eq. 10). If the weighted sum of the input signals exceeds the threshold value, the
output will be 1, otherwise the neuron returns −1 or sometimes 0. The weight w0

plays the role of the threshold value. We get the following mathematical model:

o(xi,1, . . . , xi,k) =

{
1 if

∑k
j=1 wjxi,j + w0 > 0

−1 if
∑k

j=1 wjxi,j + w0 ≤ 0
(10)

Learning the perceptron is about changing weights when the answer was incor-
rect.

wj = wj +4wj

where

4wj = η(yi − o)xi,j

η is the learning coefficient, the value of which is usually set to 0.1.
For a correctly classified example, the weights are not changed. If the model

incorrectly classifies an example from class 1 to class −1, then the difference yi− o
will be 2, and incorrect classification of an example from class −1 to class 1 will
give a difference of −2. Learning is as follows:

• reading and prediction of the next example;

• checking the prediction result:

– if it is consistent with the result variable value, the weights are not
changed;

– if it is −1 and should be 1, the weights of the example variables are
incremented;

Figure 4: The Perceptron: input xi ∈ Rk, k connection weights wj and activation
function f . The result output is given by ŷi = f(

∑k
j=1 wjxi,j + w0)

A Brief Review on Supervised Machine Learning 23

– if it is equal to 1 and should be −1, the weights of the example variables
are decreased.

The procedure is repeated for all examples. We repeat the learning process many
times on the set of training data. Increasing the weights causes that after some
time the sum of weighted values for the analyzed example will exceed the threshold
function, so the example will be correctly assigned to class 1, while decreasing
the weights will cause that after some times the sum of weighted values for the
analyzed example will fall below the threshold, so the example will be correctly
assigned to class −1. The applied learning method guarantees that weights will be
able to correctly classify all the examples, as long as the correct solution exists, i.e.
the examples are linearly separable.

For example, teaching perceptron the AND function (logical conjunction) is
possible. Conjunction returns true only when both factors are true (1), so it is
enough to set the threshold value w0 to 0 so that the weighted sum of both variables
is greater than zero only when both variables are positive. Similarly, the perceptron
of the OR (logical alternative) function, which is false only when both components
are false (−1), can be simulated. It is enough to take the threshold value w0 equal
to 1. Consider the XOR function. This function returns true if the factor values are
different, and false if they are the same. Let’s look at the graphical representation
of the XOR function (fig. 5) to see that there is no single straight line that separates
the cases belonging to different classes (false and true).

Figure 5: On the axes there are values of both variables, pluses symbolize true values
and circles — false values of AND, OR and XOR functions. The XOR function is
not linearly separable

Many real problems are not linearly separable. You can deal with them by
adding extra neurons. Each neuron in a hidden layer divides the example space
into two subspaces. The result of these splits is summed up in the result node. As
a result, we obtain a subspace which is a convex polyhedral set. If one of the two
subsets of examples with true and false values is contained in this convex set, it
can be placed in the appropriate class.

The idea of a one-way artificial neural network with hidden layers is called the
Multi-layer Perceptron. The question of updating the hidden layer weights remains
to be resolved. Learning a network requires knowing the expected responses of the

24 M. Piekarz

neurons of each layer. Unfortunately, they are known only for the output layer,
they are not defined for hidden layers. This problem contributed to the first crisis
in the development of artificial neural networks, blocking the ability to effectively
learn multilayer networks [17]. Only the development of a method that allowed
the mathematical determination of the error made by the neurons of the hidden
layers, based on the error of the output layer, and using it to correct the weights of
neurons of these layers, allowed for the development of artificial neural networks.
A method that was intensively worked on in the 1960s and 1970s is called the error
backpropagation method [14]. It was popularized by G. Hinton [8, 9] and its idea
is commonly used to train multilayer networks.

The error back propagation algorithm defines the weight correction procedure
in a multi-layer network using gradient optimization methods. The correction of
the net weight vector is based on the minimization of the loss function, which was
defined as the sum of squared errors at the network outputs. The learning cycle
using the error backpropagation method consists of the following stages:

1. Determining the response of the output layer neurons and hidden layers to a
given input signal.

2. Determining the error made by neurons located in the output layer and send-
ing it towards the input layer.

3. Updating weights.

The responses of all output neurons of the network are described as follows:

ŷouti = f

 l∑
j=1

wi,jy
out−1
j

Figure 6: One-way neural network with one hidden layer where each neuron is
connected to all neurons from adjacent layers

A Brief Review on Supervised Machine Learning 25

where l is the number of neurons in the layer preceding the output layer. Then we
need to calculate the errors of all neurons of the output layer:

δouti = yi − ŷouti

The next step is to calculate the errors in the hidden layers (remember that in order
to find the error in the h − 1 layer, you need to know the error in the following
layer - h):

δh−1j =
df(uh−1j)

duh−1j

p∑
k=1

δhkw
h
k,j

where p is the number of neurons in the following layer h, uh−1j is the output of
j-th neuron hidden h − 1 layer (weighted sum of input values from hidden h − 2
layer). Finally, the weights are updated:

wh−1
j,i = wh−1

j,k + ηδh−1j yh−1i

In practice, the method of backward error propagation is very effective, un-
fortunately its disadvantage is the long learning time. The course of the learning
process of the backpropagation network strongly depends on the value of the learn-
ing coefficient η, its too high value often leads to process discrepancies, and too
low a very long time. Unfortunately, there are no rules that could precisely define
its value.

We can easily extend a binary classification to a multi-class classification using
one of the two methods:

• The One-vs-Rest (OvR) strategy splits a multi-class classification into one
binary classification problem per class, where this class is treated as a positive
class and examples from the remaining classes are considered to be negative
class objects. Another classifier is used to classify new, untagged training data
(assigned to a negative class) and so on. As a result, we construct l classifiers,
where l is the number of class labels.

• The One-vs-One (OvO) strategy splits a multi-class classification into one
binary classification problem per each pair of classes. As a result, n classifiers
are created, according to the formula: n = l(l − 1)/2 for an l-class problem.
During classification, a voting scheme is used: all n classifiers select their
class. The class that has been selected by the largest number of classifiers is
selected.

The use of neural networks for regression problem requires the use of a learning
procedure other than that used in perceptron, so that the prediction output is the
value of the target variable. To do this, you need to replace the threshold activation
function with another one. Choosing the linear function w0 + w1x1 + . . . + wkxk
would reduce any deep artificial neural network to a single neuron. Thus, a nonlinear
differentiable activation function must be chosen. Unfortunately, the use of such
an activation function causes the MSE loss function to gain local minima, i.e. we
lose the guarantee of finding the optimal solution [17]. After 20 years, thanks to,
among others, the works of G. Hinton, it became clear that local minima are not

26 M. Piekarz

such a serious problem. First of all, finding one of the local minima often gives a
fairly good solution. Secondly, optimization of the fastest gradient descent method
allows to avoid local minima by changing the learning coefficient. In low with one
or more hidden layers of artificial neural networks the most popular functions are
sigmoid:

fsigmoid =
1

1 + e−y

where y = w0 + w1 ∗ x1 + w2 ∗ x2 + . . . + wk ∗ xk and returns values from 0 to 1,
and hyperbolic tangent:

fhtan =
ey − e−y

ey + e−y

returns values from −1 to 1.

Figure 7: Plot of sigmoid and tangent activation functions

The sigmoid function is used in the output layer, and hidden layers use both. In
deep neural networks with several dozen or more hidden layers, the most frequently
used activation function is ReLU (Rectified Linear Unit) [7], which is a combination
of a threshold function and a linear function and returns 0 on the output or the
input signal if it exceeds the threshold value:

o(x) =

{
w0 + w1xi,1 + . . .+ wkxi,k if w0 + w1xi,1 + . . .+ wkxi,k > 0

0 if w0 + w1xi,1 + . . .+ wkxi,k ≤ 0
This function is simple and has little effect on learning time.

4.2 Linear regression models

Regression analysis is typically used for forecasting and prediction, and its ap-
plication largely covers the area of machine learning. It can be used to determine
causal relationships between the independent variable and the dependent variable.

A Brief Review on Supervised Machine Learning 27

Regressions show the relationship between a dependent variable and a fixed set of
different variables. The main idea of linear regression is presented on page 11.

Linear regression methods are among the most widely used machine learning
models. Their advantages include simplicity, which makes learning fast and does
not require large computing power or large RAM memory. Linear regression models
are likely to work if the input data meets four requirements:

1. Input variable must be linearly correlated with the output variable. The
strength of linear correlation between numerical variables can be measured
by the r-Pearson coefficient, the value of which range from −1 to 1, where
−1 means one hundred percent negative correlation (with an increase in the
value of one variable, the value of the other variable decreases), 0 no corre-
lation, 1 means one hundred percent positive correlation (as the value of one
variable increases, the value of the other variable also increases).

2. The values of the input variables must be normally distributed, that is, the
data must not contain outliers.

3. Input variables cannot be strongly correlated with each other.

4. Input variables cannot have autocorrelation, i.e. the current value cannot
depend too strongly on the preceding values. To fulfill them, monotonic vari-
ables such as timestamps, cycle numbers should be removed.

We will focus here on linear regression models, especially on two: logistic re-
gression, which is used for classification problems, and ordinary least squares linear
regression, for regression problems.

Logistic regression is supervised learning, but contrary to its name, it is not
a regression but a classification method. It assumes that data can be classified
(separated) by a line or n-dimensional plane, that is, it is a linear model. Classifi-
cation is performed by calculating the value of the output variable as the value of
a first-order polynomial of the following form:

y = w0 + w1 ∗ x1 + w2 ∗ x2 + . . . + wk ∗ xk

where x is the input data (vector of feature), wi weights assigned to these features,
and k is the number of input variables (features). The next step is to pass the result
y obtained through a logistic function (e.g. sigmoid or hyperbolic tangent).

The sigmoid function gives values in the range [0, 1] and its result can be
interpreted as a probability. After obtaining such a value, we can classify the input
data to group A or group B on the basis of a simple rule: if y >= p then class A,
otherwise class B. The parameter p means the threshold value, defaults to 0.5.

To carry out the learning process, we can use the fastest gradient descent
method, so we need the loss function l. In the case of binary classifiers, the error
consists in returning a class other than the target one, that is assigning examples of
class A to class B or vice versa. In the simplest case, model training could consist in
minimizing errors understood in this way, i.e. using a threshold (zero-one) loss func-
tion. Unfortunately, it is not suitable for the fastest gradient descent method. We
need a differentiable convex function. The three most frequently used loss functions
in the classifiers are:

28 M. Piekarz

• hinge function: lhinge(yi, ŷi) = max [0, 1− yiŷi]

• logistic function llog(yi, ŷi) = log (1 + exp [−yiŷi])

• square function lsqr(yi, ŷi) = (yi − ŷi)2

By ordinary least squares linear regression we understand the aforementioned
linear regression model with a hypothesis in the form of a first order polynomial
as in the case of logistic regression, except that the output variable may be a
continuous numeric, with loss function lsqr and fastest gradient descent method
used to find the correct hypothesis, page 13.

4.3 Evaluation of machine learning models
There is no universal machine learning algorithm. This statement is a conse-

quence of the NFL (no free lunch) theorem of David Wolpert andWilliam Macready
appears in [16]. In its simplest version, the NFL theorem is as follows: the general-
ized average error of any machine learning model is 50%, which is equal to random
guessing. This can be proved by noting that for each h hypoethesis which has the
generalized error of 0.5 + δ, there is an alternative hypothesis h′ which has the
generalized error of 0.5 − δ so the mean of these hypotheses will be 50%. By the
generalized error we understand the accuracy of the model prediction on the test
data.

So we should not assume that some machine learning algorithm is better able to
deal with the problem than another machine learning algorithm. Moreover, a model
that coped well with one task, i.e. its generalized error was high, may not solve
another problem, i.e. the generalized error of a model with the same architecture
will be low. So there is no perfect combination of model hypermarameter. The
answer to the question why sometimes more complex models (such as multilayer
neural networks) cope with tasks worse than simple models (logistic regression) is
the issue of overfitting, and more on this in section 5.

In practice, this means that we have to build and compare many models with
each other in order to choose the best one.

4.3.1 Evaluation of classification models

We most often evaluate models in terms of the accuracy and credibility of the
predictions. Binary classifiers assign examples to one of the two classes, we can
symbolically call them negative and positive. So we have three possibilities, an
example can be correctly classified, an example of a positive class can be assigned
a negative class, and an example of a negative class can be assigned a positive class.
By counting individual cases, we can create a model error matrix.

In the table, the symbols TP, TN, FP and FN mean, respectively: the number
of correctly classified examples as positive (True Positive), the number of correctly
classified examples as negative (True Negative), the number of incorrectly classified
examples as positive (False Positive), called errors of the first type and the num-
ber of misclassified examples as negative (False Negatives) known as second type
errors. Based on the error matrix, the following types of measures are introduced
to evaluate classification models.

A Brief Review on Supervised Machine Learning 29

Table 1: Error matrix. In the top row we have true class labels, and the labels in
the first column of the following rows correspond to the class predictions

1 0
1 TP FP
0 FN TN

• Accuracy: measures the proportion of correct classifications to all classifica-
tions.

ACC =
TP + TN

TP + FN + FP + TN

Accuracy is sometimes expressed in the number of classification errors (error
rate)

ER = 1−ACC =
FP + FN

TP + FN + FP + TN

• Positive Predictive Value: measures the proportion of correct positive classi-
fications to all positive alignments. It answers the question: How many posi-
tively classified cases are well classified?

PPV =
TP

TP + FP

• Negative Predictive Value: Positive Predictive Value measures the proportion
of correct negative classifications to all positive alignments. It answers the
question: How many of the negatively classified examples have been classified
well? We use PPV i NPV when we want to limit errors of the first type.

NPV =
TN

TN + FN

• Sensitivity (true positive rate): measures the proportion of correctly classified
positive examples against all positive examples. It answers the question: How
many of the positive examples have been classified well? We use it when we
want to limit errors of the second type.

TPR =
TP

TP + FN

• The equivalent of sensitivity for a negative class is specificity, also called true
negative rate.

TNR =
TN

TN + FP

• F-score: is the harmonic mean of precision and sensitivity. This measure takes
values from 0 to 1, where 1 means a faultless model. We use it to evaluate
the model if the costs of both types of errors are close.

F -score = 2
PPV ∗ TPR
PPV + TPR

30 M. Piekarz

• Cohen’s Kappa coefficient: compares the measured accuracy of the model
with the expected, i.e. random guessing validity. The expected validity is
calculated by multiplying the number of examples of a given class by the
number of examples assigned to that class by the model and dividing the
result by the number of all examples. This measure takes values from −1
to 1. Value 0 means a random model, the closer to 1 the better the model,
negative values mean the model is worse than random.

Kappa =
ACC − expACC

1− expACC

The quality of classifiers can also be presented using curve in a two-dimensional
space the ROC (Receive Operating Characteristics). On the abscissa axis we place:
1− TNR, and on the ordinate axis TPR. Properties of the ROC space:

• the point with the coordinates (0, 0) represents a model that always returns
negative predictions;

• point (1, 1) represents a model that always returns positive predictions;

• point (0, 1) represents an ideal model;

• points on the diagonal, i.e. the TPR = 1 − TNR line, represent a random
model.

The correct models are those represented by points in the upper part of the
chart. The more on the top left side the model is, the better it is — the greater
the specifity and sensitivity. To plot the ROC curve, prediction probabilities are
needed, based on which we classify the cases using a threshold value (e.g. 0.5). By
changing the threshold value of the model prediction we obtain a sequence of points
representing the classifier in the ROC space. By combining these points, we get the
ROC curve, it shows the relationship between the number of correctly classified ex-
amples from the positive TP class and the number of incorrectly classified examples
from the negative FP class. The advantage of the ROC curve is its independence
from the adopted prediction threshold. The area under the ROC curve (AUC) is
also used to compare classifiers. The ideal classifier has an AUC value of 1 and for
a random classifier it is 0.5. AUC can be interpreted as the probability that the
model will score a randomly selected positive item higher than a randomly selected
negative item (Wilcoxon’s test).

We covered the topic of evaluating binary classification models. When it comes
to multiclass classification, the same is true. Their assessment is also based on
the error matrix, in which the number of rows and columns corresponds to the
number of classes. In the columns of the error matrix, we have counted frequencies
of classes, and in the rows, the predictions are counted. The single values represent
the number of class examples that have been assigned to the class by the model.
Hence, the diagonal of the error matrix will contain correct predictions, the others
contain model errors.

Metrics such as accuracy or sensitivity can also be calculated for each class
separately treating all other classes as meta-class different, i.e. using the OvR ap-
proach. Then the metrics calculated for each class can be averaged. We are talking

A Brief Review on Supervised Machine Learning 31

then about the so-called macro and micro measures. For example, the accuracy
macro is expressed by the formula:

macroPPV =

∑l
i=1

TPi

TPi+FPi

l

where l is the number of classes. This type of measure is good for balanced data.
However, when our data is not balanced, the better choice are micro measures that
take into account the size of individual classes:

microPPV =

∑l
i=1 TPi∑l

i=1(TPi + FPi)

4.3.2 Evaluation of regression models

Regression models estimate the actual value of the output variable, so it is best
to evaluate them by comparing the prediction results with the true values of the
output variable. Models built to solve the same task should be assessed on the basis
of one criterion, often the same criterion is selected for the evaluation of the model
that was used for the loss function. This approach can give the best results because
the models learn to minimize the same error that we then use to evaluate them.
The most common measures used to evaluate regression models are following.

• Mean absolute error (MAE) corresponding to the loss function labs.

MAE(ŷ, y) =

∑n
i=1 |ŷi − yi|

n

where n is the number of examples, i another example, ŷi the prediction of the
output variable yi the target value of the output variable. MEA takes values
from 0 to infinity, lower values mean a more accurate model. This measure
returns the result on the same scale as the output variable and is interpreted
as an average model error.

• Root mean square error (RMSE) corresponding to the loss function lsqr.

RMSE(ŷ, y) =

√∑n
i=1(ŷi − yi)2

n

RMSE takes values from 0 to infinity, lower values mean a more accurate
model. It is never less than the MAE and it makes the model sensitive to
large errors because the errors of the single predictions are squared instead of
being averaged. Therefore, one large mistake can have a greater effect on the
size of the measure than several small ones. It is characterized by a stronger
punishment of large mistakes.

• Coefficient of determination R2 (convergence coefficient 1−R2)

R2(ŷ, y) = 1−
∑n

i=1(ŷi − y)2∑n
i=1(yi − ȳ)2

32 M. Piekarz

where ȳ is the mean of the actual values of the output variable. R2 takes
values from 0 to 1 and is a measure of the quality of the model fit to the
training data. A value of 0 means that the model has no predictive power
and is no better than the random model, the fit of the model is the better,
then closer the value of R2 is to 1. R2 is often multiplied by 100 to get a
percentage score on a scale of 0 to 100.

4.4 Python machine learning examples

We now move on to the sample Python applications discussed in this section of
machine learning methods.

We start with some classifiers using the Python sklearn library. To train and
then test our model, we will use data from the Iris data set. It is flower data set
created in 1936 by Ronald Fisher. This set describes iris flowers using 4 attributes:
the length and width of the petals and sepal, and assigns each flower its actual
species. The flowers are divided into three species: setosa, versicolor and virginica,
which are assigned values 0, 1 and 2 respectively in the data set. The data set
contains a total of 150 examples, 50 for each species.

The first model that we will present will be the perceptron model . We will
start with importing the sklearn library elements. We need the iris data set, and
a class that creates a perceptron model.

We will import the method of automatically dividing data into a training and
test set too.

from sklearn.datasets import load_iris
from sklearn.linear_model import Perceptron
from sklearn.model_selection import train_test_split

Next we load the data:

x_var, y_var = X, y = load_iris(return_X_y=True)

There are three classes in the Iris data set of examples. The perceptron
originally divides the examples into two classes. So let’s choose from the data only
those examples for which the output variable takes the value 0 and 1.

x_var_new, y_var_new = x_var[(y_var==0)|(y_var==1)],
y_var[(y_var==0)|(y_var==1)]

and divide them into the training set x_train, y_train and the test set
x_test, y_test in the variables x_train and x_test describe the features
of the examples, while y_train and y_test the output values, i.e. numerical
representations of iris species.

x_train, x_test, y_train, y_test = train_test_split(x_var_new,
y_var_new, test_size=0.3, stratify=y_var_new)

A Brief Review on Supervised Machine Learning 33

The train_test_split function divides the data set randomly, randomiz-
ing 30% examples (test_size = 0.3) to the test set, making sure that the output
variable values are evenly distributed between the training set and the test set
(stratify=y_var_new).

The Perceptron implements a simple classification algorithm suitable for large
scale learning which allows you to update weights based only on errors without
additional regularization. We can set there several parameters, including

• tol, which by default takes the value: 1e − 3 and defines the stop criterion
when the improvement in the model prediction is less than the value set in
tol, i.e. loss > previous_loss - tol;

• eta0 (learning coefficient η), which defaults to 1 and stands for constant by
which the updates are multiplied.

Now we will create a perceptron model with eta0 = 0.1

p = Perceptron(eta0=0.1)

and at the end train the model on the training data:

p.fit(x_train,y_train)

The fit method starts with a weight vector that contains small random
numbers generated by a normal distribution with a standard deviation of 0.01.
After fitting the model, we can check its operation on the test data:

yhat=p.predict(x_test)

and check how many times our model has made a mistake on the test data:

print(’Incorrectly classified samples:%d’%(y_test!=yhat).sum())

In our case, we got the answer:

Incorrectly classified samples: 1

Now we build another classifier for data from Iris data set, using the Python
sklearn library again and the LogisticRegression class performs linear regres-
sion using the logistic function llog as the loss function. This model can also be
used for multiple classification. The OvR method is used to extend the binary
to multi-class classification as well as in the case of Perceptron. So we’re going
to split the entire iris data set into training and test data sets and apply the
LogisticRegression model to divide the examples into three classes (as originally
found in the iris database).

from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression

34 M. Piekarz

x_train, x_test, y_train, y_test = train_test_split(x_var, y_var,
test_size = 0.3, random_state = 0,stratify=y_var)
p = LogisticRegression(multi_class=’ovr’)
p.fit(x_train,y_train)

After fitting the model, we can check its operation on the test data:

yhat=p.predict(x_test)

and check how many times our model has made a mistake on the test data:

print(’Incorrectly classified samples:%d’% (y_test!=yhat).sum())

In our case, we got the answer:

Incorrectly classified samples: 4

We will now check how the evaluation of our multiple classification
LogisticRegression model.

For this purpose, we import from sklearn methods determining evaluation
measures for classification problem:

from sklearn.metrics import accuracy_score, precision_score,
recall_score, f1_score, roc_auc_score

Since the Iris data set is balanced, there are 50 examples of each class, and the
division of the data into the training set and the test set is also carried out in a
balanced way, we will use macro measures(average=’macro’).

print(’ACC: %.2f’% accuracy_score(y_test,yhat))
print(’PPV: %.2f’% precision_score(y_test,yhat,average=’macro’))
print(’TPR: %.2f’% recall_score(y_test,yhat,average=’macro’))
print(’F-score: %.2f’% f1_score(y_test,yhat,average=’macro’))
print(’AUC: %.2f’% roc_auc_score(y_test, p.predict_proba(x_test),
multi_class=’ovr’))

we got:

ACC: 0.93
PPV: 0.94
TPR: 0.93
F-score: 0.93
AUC: 0.99

And next we build a linear regression model for regression problem using the
Python sklearn library like earlier. To train and then test our model, we will use
data from the Iris data set too. The data set, similarly to the classification, will be

A Brief Review on Supervised Machine Learning 35

divided by randomly selecting 30% of the examples for the test set, using the rest
as a training set.

Now we will create a linear regression model and train the model on the
training data. This model implements multiple linear regression.

from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train, y_train)

Now it remains to check the learning result of the model and evaluate it. We
will run our model for a test dataset.

yhat = lr.predict(x_test)

The presetting result is shown in the figure 8.

Figure 8: Prediction result for several examples from the test data set

Let’s compute the errors for our linear regression model. We import the necessary
methods:

from sklearn.metrics import mean_absolute_error,
mean_squared_error, r2_score
print(’Mean absolute error: %.2f’,
% mean_absolute_error(y_test, yhat)) print(’Root mean square error:
%.2f’,
% math.sqr(mean_squared_error(y_test, yhat)))
print(’Coefficient of determination: %.2f’ % r2_score(y_test,
yhat))

36 M. Piekarz

The result obtained is:

Mean absolute error: 0.19
Root mean square error: 0.24
Coefficient of determination: 0.89

while this model errors and model fit for training data set was:

Mean absolute error: 0.16
Root mean square error: 0.21
Coefficient of determination 0.94

At the end we will use the Python sklearn library again to test the operation
of an artificial neural network in order to perform the regression problem. We will
be based on the Iris dataset to. We will use MLPRegressor class which implements
the idea of Multi-layer Perceptron. The MLPRegressor method builds an artificial
neural network model with the ReLU activation function and is based on a
Mini-Bath Gradient Descent with a bath size equal to min(200, n), where n is the
number of examples. There are less than 200 examples in our training set, so the
weights will be updated after each epoch.

from sklearn.neural_network import MLPRegressor
p = MLPRegressor(max_iter=500)
p.fit(x_train,y_train)
yhat=p.predict(x_test)

Fitting the model took 160 iterations to fit model.

Now we will present the same error measurements as in the case of the
LinearRegression model for model of artificial neural network regression:

The result of prediction for test data set is:

Mean absolute error: 0.19
Root mean square error: 0.24
Coefficient of determination 0.89

while this model errors and model fit for training data set was:

Mean absolute error: 0.17
Root mean square error: 0.22
Coefficient of determination 0.93

A Brief Review on Supervised Machine Learning 37

5 Methods of preventing overfitting and underfit-
ting

An important consideration in learning the target function from the training
data is how well the model generalizes to new data. Generalization is important
because the data we collect is only a sample, it is incomplete and noisy. The goal
of a good machine learning model is to generalize well from the training data to
any data from the problem domain.

We will refer to the Statistical Learning Theory [23, 15] a theoretical framework
for understanding and assessing the learning process. The probability density func-
tion (PDF) helps us to estimate the probability of a given x event, assuming a value
in a certain range. Given the probability density function f(x), the probability of
the interval A is given by the area under the function f(x) on the interval A:

P (A) =

∫
A

f(x)dx

where is required:

f(x) ≥ 0 for all x,
∫
R
f(x)dx = 1

The hypothesis h : X → Y is an approximation of the special probability density
function P (x, y), also known as the join probability density function, which de-
scribes the join behavior of two variables, X the input space of examples and Y as
the output variable, and is required to satisfy the following conditions:

P (x, y) ≥ 0 for all x, y,
∫ ∫

P (x, y)dxdy = 1.

Next we will refer to the concept of a performance measure for any hypothesis
built on a certain sample from all possible examples from the X×Y space that have
a fixed join probability density function P (x, y). This measure is called expected
risk and is defined by the expected value of the loss function l of the h hypothesis
when all possible examples of (x, y) ∈ X × Y are evaluated.

R(h) = E(l(x, y, h(x))) =

∫
l(x, y, h(x))dP (x, y)

Difference |Remp(h)−R(h)| allows us to understand how a certain hypothesis h
works on unseen examples, i.e. how this hypothesis behaves with new data and tells
us when the empirical risk is a good estimate of R(h) supporting the selection of the
best hypothesis based on Remp. We say that a given hypothesis h generalize when
this difference is sufficiently small which means it can deal with seen and unseen
examples alike. Let F be a set of possible hypotheses for our machine learning
model, Fall be a set of all possible hypotheses (all possible functions from X to Y).
Let fBayes is the best possible hypothesis for our problem from the set Fall. The
Bayes consistency states that, as the training data set size increases, the learning
algorithm must approach the best hypothesis, i.e.:

lim
n→∞

E[l(x, y, h(x))] = R(fBayes)

38 M. Piekarz

In practice, Fall is outside the model range, the model has a range limited to a
certain bias F ⊆ Fall. We will say that the learning algorithm is consistent when
it coincides with the best hypothesis in F :

lim
n→∞

E[l(x, y, h(x))] = R(fbest)

Let us introduce the following concepts to further considerations about situation
when the resulting model fails to learn, i.e. it will overfit or underfit examples. Let’s
define two learning errors:

• Estimation error — illustrates how far our solution hi is from the best possible
hypothesis fbest. This error is the result of the uncertainty contained in the
training data set (noise, data errors): R(hi)−R(fbest).

• Approximation error — illustrates how far the best possible hypothesis fbest
is from the best hypothesis out of the whole pool Fall, fBayes. This error is
the result of an error imposed by the algorithm (bias): R(fbest)−R(fBayes).

Figure 9: Illustration of estimation and approximation error

The total error — illustrates how far our solution hi is from the best hypothesis
fBayes is defined in terms of estimation and approximation errors:

R(hi)−R(fBayes) = (R(hi)−R(fbest)) + (R(fbest −R(fBayes))).

From this perspective, we can define underfitting and overfitting as follows:

• underfitting — for a small bias F , estimation error is small but approximation
error is large;

• overfitting — for a large bias F , estimation error is large but approximation
error is small.

For example for problem XOR, the perceptron results in underfitting since fbest
is not even enough to represent the training data. On the other hand, if we take

A Brief Review on Supervised Machine Learning 39

a neural network with a large number of neurons in hidden layers, the result can
be a much larger hypothesis subspace than necessary, leading to overfitting. In
fact, convergence to fBayes becomes more difficult due to estimation error. The
resulting function is likely to be much more complex than the problem requires,
causing little empirical risk but high expected risk when the invisible examples
represent any little variation in the data.

This shows how important it is to select a model, a machine learning algorithm.
We should use the bias subspace that will be sufficient and necessary for the given
problem. By using an insufficient or overcomplex bias we can fall into under and
overfitting respectively. Overfitting and underfitting are the two biggest causes for
poor performance of machine learning algorithms.

Underfitting is often not discussed because it is easy to spot, just take a good
evaluation measure. The solution is to try alternative machine learning algorithms.

Overfitting refers to a model that models training data too well. It is a threat to
high bias models, i.e. models in which there are many potential hypotheses, hence
they are more complex. Good fit to training data also means adjusting to the noise
contained in it or random data fluctuations. The models most prone to overfitting
are non-parametric and non-linear models, which are more flexible in learning the
target function. Therefore, additional parameters and techniques are used in such
algorithms to prevent overfitting.

The most popular forms of overfitting prevention are l1 and l2 regularization.
For the loss function:

l = (wx+ b− y)2

l1 regularization (called the Lasso Regularization) is adding a term α|w| to the loss
function:

l1 = (wx+ b− y)2 + α|w|

and l2 regularization (called Ridge Regularization) is adding a term αw2 to the
loss function:

l2 = (wx+ b− y)2 + αw2

for α > 0.
With the gradient descent for l1 regularization we have:

w′ = w + λ
∂l1

∂w
= w − λ(2x(wx+ b− y) + α

d|w|
dw

)

=

{
w − λ(2x(wx+ b− y) + α w > 0
w − λ(2x(wx+ b− y)− α w < 0

and for l2 regularization:

w′ = w + λ
∂l2

∂w
= w − λ(2x(wx+ b− y) + 2αw)

Note that the fit of w depends on the model (w at start and b) and the data
(x and y). Updating the weights only based on the model and data can lead to
overfitting. By adding the predefined α parameter, the final w value is influenced
not only by the model and data, but also by a value independent of the model

40 M. Piekarz

and data. In this way, we can prevent overfitting if we set an appropriate α value,
although too high a value will result in a serious mismatch of the model.

How does α affect the model for regularization l1: if w is positive, the regu-
larization parameter α > 0 will make w less positive by subtracting α from w.
Conversely, if w is negative, α will be added to w, making it less negative. Hence,
it causes a shift of w to 0. This would obviously be pointless in the case of linear
regression with one input variable, but in the case of more complex models, such
as multivariate regression, it works in such a way that some features for which
wi closes to 0 cease to affect the model or will be completely eliminated which
simplifies the model preventing overfitting.

In the case of regularization of l2, we always decrease w, in this case we will
not reduce the number of model features, but we will reduce their influence on the
model by reducing their coefficients. Both types of regularization are helpful, which
is why a combination of them, ElasticNet, is often used:

ElasticNet = (wx+ b− y)2 + α(β|w|+ 1− β
2

w2)

where β is the mixing parameter between l2 (β = 0) and l1 (β = 1) regularization.

References
[1] F. J. Anscombe, Graphs in statistical analysis. American Statistician., 27, 17–

21, 1973.

[2] Léon Bottou, Frank E. Curtis, Jorge Nocedal, Optization Methods for Large-
Scale Machine Learning, 2018, https://arxiv.org/pdf/1606.04838.pdf

[3] H. Daumé Course in III, A Course in Machine Learning, Self-published, 2017

[4] P. Domingos, A Few Useful Things to Know about Machine Learning, 2012,
https://homes.cs.washington.edu/ pedrod/papers/cacm12.pdf

[5] I. Goodfellow, J. Pouget-Abadie , M. Mirza, X. Bing, D. Warde-Farley,S.
Ozair, A. Courville, Y. Bengio, Generative Adversarial Networks, 2014,
http://arxiv.org/pdf/1406.2661.pdf

[6] M. Hardt, B. Recht, Y. Singer, Train faster, generalize better: Stability of
stochastic gradient descent, Proceedings of The 33rd International Conference
on Machine Learning, PMLR 48:1225–1234, 2016.

[7] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann ma-
chines, In Proceedings of the 27th international conference on machine learning
(ICML-10), pp. 807–814, 2010

[8] G. E. Hinton, S. Nowlan, D. Plaut, Experiments on learning by back-
propagation. Technical Report CMU-CS-86-126. Department of Computer Sci-
ence, Carnegie-Mellon University, 1986

[9] G. E. Hinton, D. E. Rumelhart, R. J. Williams, Learning representations by
back-propagating errors. Nature, 323, 533–536, 1986

A Brief Review on Supervised Machine Learning 41

[10] J. A. Hartigan, and M. A. Wong: A K-Means Clustering Algorithm, Applied
Statistics, Vol. 28, No. 1, pp. 100–108, 1979

[11] G. Hughes, On the mean accuracy of statistical pattern recognizers, IEEE
Transactions on Information Theory. 14 (1): p. 55–63, 1968

[12] S. T. Konstantnos Koutroumbas,Pattern Recognition (4th ed.), Burlington,
ISBN 978-1-59749-272-0, 2008

[13] H. Liu; H. Motoda, Feature Selection for Knowledge Discovery and Data Min-
ing, The Springer International Series in Engineering and Computer Science
Ser., New York, NY: Springer, ISBN 879-1-4613-7604-0, 1998

[14] S. Linnainmaa. The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors. Master’s Thesis
(in Finnish), Univ. Helsinki, 1970. See chapters 6–7 and FORTRAN code on
pages 58–60. PDF. See also BIT 16, 146–160, 1976

[15] R. F. de Melo, M. A. Ponti, Machine Learning. A Practical Approach
on the Statistical Learning Theory, Springer, ISBN 978-3-319-94988-8,
https://doi.org/10.1007/978-3-319-94989-5, 2018

[16] W. G. Macready, D. H. Wolpert, No Free Lunch Theorems for Optimization,
IEEE Transactions on Evolutionary Computation 1, 67, 1997

[17] M. Minsky, S. Papert, Review of ’Perceptrons: An Introduction to Computa-
tional Geometry’, 1969

[18] S. Na, L. Xumin and G. Yong, “Research on k-means Clustering Algorithm:
An Improved k-means Clustering Algorithm”, 2010 Third International Sym-
posium on Intelligent Information Technology and Security Informatics, pp.
63–67, doi: 10.1109/IITSI.2010.74, 2010

[19] G. Pang, C. Shen, L. Cao, and A. van den Hengel, Deep Learning for Anoma-
lyDetection: A Review.ACM Comput, Surv.1, 1, Article 1 (January 2020),
https://doi.org/10.1145/3439950

[20] F. Rosenblatt, The perceptron: a perceiving and recognizing automaton, Tech-
nical report 85-460-1, Cornell Aeronautical Laboratory, 1957

[21] C. E. Shannon, A Mathematical Theory of Commu-
nications, The Bell System Technical Journal, 1948,
http://math.harvard.edu/ ctm/home/text/others/shannon/entropy/
entropy.pdf

[22] V. N. Vapnik, Statistical Learning Theory Adaptive and Learning Systems for
Signal Processing, Communications, and Control, Wiley, Hoboken, 1998

[23] V. N. Vapnik, The Nature of Statistical Learning Theory, Information Science
and Statistics, Springer, New York, 1999

[24] Hadley Wickham, Tidy Data, Journal of Statistical Software, Volume 59, Issue
10, August 2014, https://www.jstatsoft.org/article/view/v059i10/v59i10.pdf

42 M. Piekarz

[25] Z. Zhang, Introduction to machine learning: k-nearest neighbors, Ann Transl
Med, 4(11): 218. doi:10.21037/atm.2016.03.37, 2016

Automatic Syllable Repetition
Detection Methods in Continuous
Speech

Adam Kobus∗

Ireneusz Codello
Wiesława Kuniszyk-Jóźkowiak
Grzegorz Marcin Wójcik

1 Introduction
The stuttering has a significant influence to the quality of stutterers life. It could

cause the self-imposed isolation, permanent stress and low self-esteem, which could
effect the whole social status, wealth and it could exclude stutterers from multiple
proffessions. The stuttering could manifest in many different ways: as prolongations,
interjections, word repetitions, syllable repetitions, blockades. Automatic detection
of the stuttering will provide multiple benefits for the affected persons. They will
be able to train the proper speech on their own more effectively, they will have fast
feedback about their achievements and they will feel that they have more influence
to their well-being. This paper shows the current works on automatic disfluency
detection. Additionally it shows two recent works of the authors about syllable
repetition detection with the use of LPC [1] and CWT [2].

1.1 Related work
There were several approaches to the syllable detection problem. First attempts

were made by Howell [3–5] in 1995 and 1997 but it is still not fully resolved problem.
Probably the reason is that the speech recognition problems are solved without
syllable discrimination.

First attempts to the automatic detection of disfluency were based on speech
fragments selection. Such approach were proposed in several articles through the
two decades [6–19].

Regardless of this method researchers as Howell [3–5] and the team
Kuniszyk-Jóźkowiak, Codello, Kobus, Suszyński and Wiśniewski [1, 2, 20–28] tried

∗Corresponding author — adam.kobus@mail.umcs.pl

43

44 A. Kobus, I. Codello, W. Kuniszyk-Jóźkowiak, G. M. Wójcik

to detect disfluencies without the word extraction. Their material contained 4s
long recording with the only information if that speech sample contain disfluent
parts. Features extracted from the speech sample but still arranged over time were
compared with the classified examples and it gave good results.

Specific problem is the syllable repetition. Despite that it is defined as the
stuttering the speech the signal could be very fluent and very similar to the proper
speech. Authors proposed two detection methods of this disorder. One is based on
the linear prediction with k-means algorithm used as a classifier [1]. Second method
is based on the wavelets and a correlation method as a classifier [2]. In this paper
authors extend these results on the larger and more differential material.

Table 1: Research summary of speech disorders automatic detection

Year/Author Features Classifiers Best results:
1995 Howell,
Sackin [3]

Manual segmentation.
Spectrum from 19-channel
vocoder, correlation
coefficients, speech
envelope

ANN
(Artificial
Neural
Network)
classifier.

Repetitions:
82%
Prolongations:
77%

1997 Howell,
Sackin [4, 5]

Manual segmentation.
Whole word and part
word length, its count and
their energy variation.
Silence length, its count
and their energy variation.
Spectrum coefficients.

ANN
classifier.

Fluent: 95%
Repetitions:
53%
Prolongations:
62%

2000 Nöth,
Niemann [29]

Manual segmentation.
HMM (Hidden Markov
Model).

ANN classifier Repetitions: -
Prolongations:
- Unwanted
silences: -

2003 Czyżewski,
Kaczmarek [7]

Manual segmentation.
Cosine transform
spectrum. Frequency
of a base tome,
first/second/third
formant. Amplitude
of the first/second/third
formant.

ANN and
rough set
classifiers.

Stop-gaps:
91%
Repetitions:
65%
Prolongations:
97%

2003 Suszyński,
Kuniszyk-Jóźkowiak [14]

Automatic segmentation.
FFT (Fast Fourier
Transform) spectrum, 1/3
octave filters

fuzzy logic Prolongations:
91%

2004 Suszyński,
Kuniszyk-Jóźkowiak [30]

Manual segmentation.
FFT spectrum, 1/3
octave filters

fuzzy logic Non-fluent
stops: 95%

2005 Suszyński,
Kuniszyk-Jóźkowiak [31]

Manual segmentation.
FFT spectrum, 1/3
octave filters

correlation
coefficients

Syllables
repetitions:
70%

Automatic Syllable Repetition Detection Methods in Continuous Speech 45

Table 1: Research summary of speech disorders automatic detection
(cont.)

Year/Author Features Classifiers Best results:
2006 Suszyński,
Kuniszyk-Jóźkowiak [32]

Manual segmentation.
FFT spectrum, 1/3
octave filters

correlation
coefficients

Phoneme
injection: 80%

2006 Szczurowska
(Świetlicka),
Kuniszyk-Jóźkowiak [16]

Manual segmentation.
FFT spectrum, 1/3
octave filters, Kohonen
network reducing

MLP
(Multi-Layer
Perceptron),
RBF (Radial
Basis
Function)
and Kohonen
maps
classifiers.

Non-fluent
stops: 96%

2007 Wiśniewski,
Kuniszyk-Jóźkowiak [25]

Manual segmentation.
HMM based on MFCC
(Mel-Frequency Cepstral
Coefficients).

Repetitions:
80%
Prolongations:
62%

2007 Wiśniewski,
Kuniszyk-Jóźkowiak [26]

Manual segmentation.
HMM based on MFCC.

Prolongations:
80%

2008 Świetlicka,
Kuniszyk-Jóźkowiak [33]

Manual segmentation.
FFT spectrum, 1/3
octave filters, Kohonen
network reducion.

MLP, RBF
and Kohonen
maps
classifiers.

Phonem
repetition:
95%

2009 Świetlicka,
Kuniszyk-Jóźkowiak [18]

Manual segmentation.
FFT spectrum, 1/3
octave filters, Kohonen
network reducion.

MLP, RBF
and Kohonen
maps
classifiers.

Prolongations:
99%

2008 Ravikumar,
Reddy [11]

Manual segmentation.
MFCC.

MLP
classifier.

Syllables
repetitions:
83%

2009 Ravikumar,
Rajagopal [12]

Manual segmentation.
MFCC.

SVM
(Support
Vector
Machine)
classifier.

Syllables
repetitions:
94%

2009 Sin Chee, Chia
Ai [34]

Manual segmentation.
MFCC.

kNN, LDA
classifiers.

Avarage for
Repetitions
and
Prolongations:
91%

2009 Sin Chee, Chia
Ai [35]

Manual segmentation.
LPCC.

kNN, LDA
classifiers.

Avarage for
Repetitions
and
Prolongations:
90%

46 A. Kobus, I. Codello, W. Kuniszyk-Jóźkowiak, G. M. Wójcik

Table 1: Research summary of speech disorders automatic detection
(cont.)

Year/Author Features Classifiers Best results:
2010 Kobus,
Kuniszyk-Jóźkowiak [22]

Manual segmentation.
LP (Linear Prediction)
coefficients, Kohonen
network reducing.

RBF and
MLP
classifiers.

Non-fluent
stops: 76%

2010 Wiśniewski,
Kuniszyk-Jóźkowiak [27]

Automatic segmentation.
HMM based on MFCC.

Prolongations:
80%

2011 Wiśniewski,
Kuniszyk-Jóźkowiak [28]

Manual segmentation.
HMM used in HTK
toolkit.

Repetitions:
89%

2011 Ravikumar,
Ganesan [13]

Manual segmentation.
MFCC.

Simplified
SVM
classifier.

Syllables
repetitions:
85%

2012 Chia Ai,
Hariharan [6]

Manual segmentation.
MFCC and LPCC (Linear
Predictive Cepstral
Coefficients).

kNN
(k-Nearest
Neighbor)
and LDA
(Linear
Discriminant
Analysis)
classifiers.

Avarage for
Repetitions
and
Prolongations:
95%

2012 Codello,
Kuniszyk-Jóźkowiak [36]

Automatic segmentation.
CWT, Kohonen network
reducing.

MLP
classifiers.

Sound
repetitions:
86%

2012 Codello,
Kuniszyk-Jóźkowiak [21]

Automatic segmentation.
CWT, Kohonen network
reducing.

MLP
classifiers.

Prolongations:
92%

2013 Codello,
Kuniszyk-Jóźkowiak [2]

Automatic segmentation.
CWT

correlation
coefficients

Syllable
repetitions
(sensitivity
and
precision):
80%

2013 Hariharan,
Fook [37]

Manual segmentation.
DWT (Discrete Wavelet
Transform) package,
sample entropy.

kNN,
LDA, SVM
classifiers.

Avarage for
Repetitions
and
Prolongations:
97%

2013 Kobus,
Kuniszyk-Jóźkowiak [23]

Manual segmentation.
LP coefficients, Kohonen
network reducing.

RBF and
MLP
classifiers.

Prolongations:
75%

2013 Fook,
Muthusamy [38]

Manual segmentation.
WLPCC (weight linear
predictive cepstral
coefficients), MFCC,
PLP (perceptral linear
predictive) coefficients.

kNN,
LDA, SVM
classifiers.

Average for
Repetitions
and
Prolongations:
95%

Automatic Syllable Repetition Detection Methods in Continuous Speech 47

Table 1: Research summary of speech disorders automatic detection
(cont.)

Year/Author Features Classifiers Best results:
2015 Oue,
Marxer [39]

MFCC, LPCC DNN (Deep
belief Neural
Networks)

Repetitions
(accuracy):
86%,
Non-speech
sound
(accuracy):
75%

2015 Mahesha,
Vinod [40]

MFCC SVM, GMM
(Gaussian
Mixture
Model)
supervector

Prolongation
and repetition
(accuracy):
98%

2016 Kobus,
Kuniszyk-Jóźkowiak [1]

Automatic segmentation.
LP coefficients

k-means and
thresholding

Syllable
repetitions:
80%

2016 Mahesha,
Vinod [41]

MFCC GMM Syllable
repetition,
word
repetition,
prolongation
and
interjection
(accuracy):
96%

2019 Manjutha,
Subashimi [42]

MFCC, PSO (Particle
Swarm Optimization),
SFO (Synergistic
Fibroblast Optimization)

SVM, NB
(Naive Bayes)

Stuttering
(accuracy):
96%

2019 Fassetti,
Fassetti [43]

Spectrograms, MFCC Deep
Learning

Disfluency
(accuracy):
96%

2 Methodology

2.1 First attempt

2.1.1 Algorithm

The first attempt is shown in Figure 1.

2.1.2 Input data

Materials were recorded with the use of Creative Wave Studio on the
SoundBlaster card with the frequency 22050Hz, 16 bps.

48 A. Kobus, I. Codello, W. Kuniszyk-Jóźkowiak, G. M. Wójcik

2.1.3 Preprocessing

Each recording was split into 512-sample frames without overlapping. For each
frame there was performed multiplication by the Hanna window function.

2.1.4 Feature extraction

Time-frequency spectrum was extracted from each frame. For this purpose
Linear Prediction Coefficients were obtained by the Levinson-Durbin [44] method.
Coefficients were used to evaluate continuous frequency spectrum with 300 stripes
accuracy. The order 15 was chosen for that purpose [45].

Figure 1: Algorithm of syllable repetition detection with the use of the LPC
coefficients and the k-means

Table 2: Syllable counts in analysed utterances
są im ni wy zie ci wi za po mu do wsze
1 2 3 2 2 1 1 3 15 3 2 1
dio dzie przy mło na wa be ge spo bo kie pe
4 5 1 5 7 1 1 5 1 8 6 2
cia ko ub mo du nie ba pom sko tro łą cha
2 10 2 5 2 2 1 1 1 3 3 3
Syllables: 117, Examined: 9 men (30 samp., 11–25yo), 5 women (26 samp., 13–24yo)

Automatic Syllable Repetition Detection Methods in Continuous Speech 49

2.1.5 Segmentation

Linear prediction coefficients were used in the method of splitting speech into
syllables. Energy from obtained spectrum stripes was averaged for each frame.
Two first vector values were averaged and this value increased by the 3 decibels
was defined as the threshold for syllable start.

2.1.6 Pairing

Two consecutive syllables were defined as a pair to comparison. If the first
syllable was shorter than the second one, the second syllable was shorten.

2.1.7 Formants extraction

The spectrum of each frame was used also to obtain speech formants [45–47].
Each formant was the local maximum with bandwidth condition fulfilled [45, 48]
and is defined by three dimensions: time, amplitude and frequency. Each frame is
represented by P formants.

2.1.8 Clusterisation

The frequency and the amplitude of each formant were used as an input of
k-means clusterization. It reduced the time dimension and the number of points to
the set of k centers. All of these dimensions were normalized by the variance of the
point values.

2.1.9 Distance measuring

The normalization allowed to provide distance measuring. In the research the
distance between vectors was defined as a sum of minimal Euclidean distances
between the first and the second vector centers in the pair.

2.1.10 Classification

Two thirds of the 262 pairs of vectors were used as a training part. One third
was a testing part. There were three types of categorization tested from which the
minimal distance to the experimentally chosen threshold between groups of pairs
classified as fluent and disfluent.

2.2 Results of the first attempt

The best results for the syllable repetition classification were reached for
6 ≤ k ≤ 7. This could be caused as a result of insufficient representation of the
speech signal when the number of formants is less than 5. Despite of the sufficient
representation when 8 ≤ k the overrepresentation could have an influence in the
distance measuring, especially in case when the lower number of formants is already
sufficient for speech signal representation.

50 A. Kobus, I. Codello, W. Kuniszyk-Jóźkowiak, G. M. Wójcik

2.3 Second attempt

2.3.1 Algorithm

The second attempt is shown in Figure 3.

2.3.2 Input data

In this research the speech data of 5 people was used. Each disorder was grabbed
in the context of 4s length and all of these 106 utterances created speech recording
5m26s long.

2.3.3 Feature extraction

The spectrogram from Continuous Wavelet Transform was created for the entire
sample. In the CWT algorithm Morlet wavelet was used as a Mother wavelet. It
allows to define a center frequency Fc by changing cosine argument. As the scale
the frequencies of Bark scale was used and the offset was defined as 50% of the
wavelet’s length.

The recording has been split to 512-sample non-overlapping frames. For each
frame the spectrogram was obtained. Each scale has his own time offset and in that
case there is a different number of CWT coefficients for each scale. These values
were averaged and the vector of the single values for each scale in the bark scale
was used for creation of the spectrogram.

Figure 2: Sensitivity and precision percentage of classification in relation to the
number k of centres

Automatic Syllable Repetition Detection Methods in Continuous Speech 51

2.3.4 Segmentation

To define speech fragments from the whole utterance the thresholds between
−50dB and −60dB were used. All parts where the speech signal has values larger
than the threshold are defined as a fragments of speech.

2.3.5 Correlation obtaining

To define the similarity of the consecutive fragments the correlation of the
vectors of CWT coefficients was evaluated. If there is a difference of the length
between two consecutive fragments A and B, the fragment B is pruned to the
length of A or if it’s larger, it is extended. The correlation was defined by an
equation 1.

C =

∑S−1
j=0

∑N−1
i=0 (V Aij − V A)(V Bij − V B)√∑S−1

j=0

∑N−1
i=0 (V Aij − V A)2

∑S−1
j=0

∑N−1
i=0 (V Bij − V B)2

(1)

where S is a number of the scales, N is the number of vectors of CWT coefficients
for both fragments, V A and V B are vectors of CWT coefficients for two consecutive
fragments A and B, V A and V B are means of all coefficients of all scales for the
corresponding fragments.

Figure 3: Algorithm of syllable repetition detection with the use of the CWT
coefficients and the correlation

52 A. Kobus, I. Codello, W. Kuniszyk-Jóźkowiak, G. M. Wójcik

Figure 4: Correlation factor depending on the length of the recording

2.3.6 Syllables pairing

The consecutive fragments were limited by the time distance between adjacent
fragments A and B. If the distance was larger than 50ms then such a pair was
not considered. Also when the length of the fragment B was shorter than fragment
A more than 100ms, such a pair was also skipped as a bad candidate for syllable
repetition.

2.3.7 Classification

Each remaining pair had obtained a correlation factor. There were tested
threshold values despite of time length of fragments and threshold lines with time
included between correlation values for pairs marked as repetitions and fluent pairs.
For each threshold there were sensitivity and predictability evaluated to define the
best threshold.

2.4 Results of the second attempt

The best results were achieved when first 5 bark scales were skipped. It
also occurs that the results were better for three segmentation thresholds:
−55dB, −58dB and −60dB. Better results for them were achieved when the
center frequency of the Morlet wavelet was higher. The threshold value was not
discriminative for the results.

The best results for the threshold line were achieved also when the center
frequency of the Morlet wavelet was higher.

Automatic Syllable Repetition Detection Methods in Continuous Speech 53

Figure 5: Sensitivity and precision results for the syllable repetition detection with
the use of CWT and correlation depends on threshold value

Figure 6: Sensitivity and precision results for the syllable repetition detection with
the use of CWT and correlation depends on threshold line

3 Summary

The current works on the automatic detection of stuttering is based on the
MFCC coefficients and with the use of SVM and Deep Learning classifiers. In
general most of the attempts take as a features MFCC, LPCC, CWT coefficients

54 A. Kobus, I. Codello, W. Kuniszyk-Jóźkowiak, G. M. Wójcik

and FFT spectrum. As the classifiers correlation coefficients, MLP, SVM, LDA and
Deep Learning were used in most of the tries. Specifically the syllable repetitions
are detected with the use of: FFT spectrum, MFCC, LPC spectrum and CWT
and as the classifier: correlation coefficients, MLP, SVM, k-means thresholding and
GMM.

All experiments prove that automatic syllable repetition recognition is possible
and algorithms provided by the research could be practically used in software for
stutterers. Detection quality gained in both of two algorithms quoted here reach
80% of precision and sensitivity. Also the other algorithms recalled in table 1 have
quality between 70% and 94%.

References

[1] A. Kobus, W. Kuniszyk-Jóźkowiak, and I. Codello. Automatic syllable
repetition detection in continuous speech based on linear prediction
coefficients. Proceedings of the 9th International Conference on Computer
Recognition Systems CORES 2015, Advances in Intelligent Systems and
Computing, 403:295–304, 2016.

[2] I. Codello, W. Kuniszyk-Jóźkowiak, E. Smołka, and A. Kobus. Automatic
disordered syllables repetition recognition in continuous speech using cwt and
correlation. Proceedings of the 8th International Conference on Computer
Recognition Systems CORES 2013. Advances in Intelligent Systems and
Computing, 226:867–876, 2013.

[3] P. Howell and S. Sackin. Automatic recognition of repetitions and
prolongations in stuttered speech. In Proceedings of the first World Congress
on fluency disorders, pages 1–4, 1995.

[4] P. Howell, S. Sackin, and K. Glenn. Development of a two-stage procedure for
the automatic recognition of dysfluencies in the speech of children who stutter:
I. psychometric procedures appropriate for selection of training material for
lexical dysfluency classifiers. Journal of Speech, Language, and Hearing
Research, 40(5):1073–1084, 1997.

[5] P. Howell, S. Sackin, and K. Glenn. Development of a two-stage procedure
for the automatic recognition of dysfluencies in the speech of children who
stutter: Ii. ann recognition of repetitions and prolongations with supplied
word segment markers. Journal of Speech, Language, and Hearing Research,
40(5):1085–1096, 1997.

[6] O. Chia Ai, M. Hariharan, S. Yaacob, and L. S. Chee. Classification of speech
dysfluencies with mfcc and lpcc features. Expert Systems with Applications,
39:2157–2165, 2012.

[7] A. Czyżewski, A. Kaczmarek, and B. Kostek. Intelligent processing of stuttered
speech. Journal of Intelligent Information Systems, 21(2):143–171, 2003.

Automatic Syllable Repetition Detection Methods in Continuous Speech 55

[8] S. M. Hiroshima. A spectrographic analysis of speech disfluencies:
characteristics of sound/syllable repetitions in stutterers and nonstutterers.
Proceedings 24th IALP Congress Amsterdam, pages 712–714, 1999.

[9] Y. V. Geetha, K. Pratibha, R. Ashok, and S. K. Ravindra. Classification of
childhood disfluencies using neural networks. Journal of Fluency Disorders,
25(2):99–117, 2000.

[10] W. Kuniszyk-Jóźkowiak, W. Suszyński, E. Smołka, and M. Dzieńkowski.
Automatic recognition and measurement of durations of fricative prolongations
in the speech of persons who stutter. (in polish). Speech and Language
Technology, 8, 2004.

[11] K. Ravikumar, B. Reddy, R. Rajagopal, and H. Nagaraj. Automatic detection
of syllable repetition in read speech for objective assessment of stuttered
disfluencies. In Proceedings of world academy science, engineering and
technology, pages 270–273, 2008.

[12] K. M. Ravikumar, R. Rajagopal, and H. C. Nagaraj. An approach for objective
assessment of stuttered speech using mfcc features. ICGST International
Journal on Digital Signal Processing, DSP, 9(1):19–24, 2009.

[13] K. M. Ravikumar and S. Ganesan. Comparison of multidimensional mfcc
feature vectors for objective assessment of stuttered disfluencies. Advanced
Networking and Applications, Int. J., 02 (05):854–860, 2011.

[14] W. Suszyński, W. Kuniszyk-Jóźkowiak, E. Smołka, and M. Dzieńkowski.
Automatic recognition of nasals prolongations in the speech of persons who
stutter. Structures - Waves - Human Health, pages 175–184, 2003.

[15] W. Suszyński. Computer analysis and speech dyspluency recognition. doctoral
dissertation. (in polish). Politechnika Śląska, Gliwice, 2005.

[16] I. Szczurowska, W. Kuniszyk-Jóźkowiak, and E. Smołka. The application of
kohonen and multilayer perceptron networks in the speech nonfluency analysis.
Archives of Acoustics, 31(4):205–210, 2006.

[17] I. Szczurowska, W. Kuniszyk-Jóźkowiak, and E. Smołka. Speech nonfluency
detection using kohonen networks. Neural Computing & Applications,
18:667–687, 2009.

[18] I. Świetlicka, W. Kuniszyk-Jóźkowiak, and E. Smołka. Artificial neural
networks in the disabled speech analysis. Computer Recognition System 3,
Springer Berlin/Heidelberg, 57/2009:347–354, 2009.

[19] T. Tian-Swee, L. Helbin, A. K. Ariff, T. Chee-Ming, and S. H. Salleh.
Application of malay speech technology in malay speech therapy assistance
tools. International Conference on Intelligent and Advanced Systems, pages
330–334, 2007.

56 A. Kobus, I. Codello, W. Kuniszyk-Jóźkowiak, G. M. Wójcik

[20] I. Codello, W. Kuniszyk-Jóźkowiak, E. Smołka, and A. Kobus. Disordered
sound repetition recognition in continuous speech using cwt and kohonen
network. Journal of Medical Informatics & Technologies, 17:123–130, 2011.

[21] I. Codello, W. Kuniszyk-Jóźkowiak, E. Smołka, and A. Kobus. Automatic
prolongation recognition in disordered speech using cwt and kohonen network.
Journal of Medical Informatics & Technologies, 20:137–144, 2012.

[22] A. Kobus, W. Kuniszyk-Jóźkowiak, E. Smołka, and I. Codello. Speech
nonfluency detection and classification based on linear prediction coefficients
and neural networks. Journal of Medical Informatics & Technologies,
15:135–144, 2010.

[23] A. Kobus, W. Kuniszyk-Jóźkowiak, E. Smołka, I. Codello, and W. Suszyński.
The prolongation-type speech non-fluency detection based on the linear
prediction coefficients and the neural networks. Proceedings of the 8th
International Conference on Computer Recognition Systems CORES 2013,
Advances in Intelligent Systems and Computing, 226:887–897, 2013.

[24] W. Suszyński. Automatic detection of speech non-fluencies. (in polish). 50th
Opened Acoustic Seminar, 2003.

[25] M. Wiśniewski, W. Kuniszyk-Jóźkowiak, E. Smołka, and W. Suszyński.
Automatic detection of disorders in a continuous speech with the hidden
markov models approach. Computer Recognition Systems 2, Springer
Berlin/Heidelberg, 45/2008:445–453, 2007.

[26] M. Wiśniewski, W. Kuniszyk-Jóźkowiak, E. Smołka, and W. Suszyński.
Automatic detection of prolonged fricative phonemes with the hidden markov
models approach. Journal of Medical Informatics & Technologies, 11:293––298,
2007.

[27] M. Wiśniewski, W. Kuniszyk-Jóźkowiak, E. Smołka, and W. Suszyński.
Improved approach to automatic detection of speech disorders based on
the hidden markov models approach. Journal of Medical Informatics &
Technologies, 15:145–152, 2010.

[28] M. Wiśniewski and W. Kuniszyk-Jóźkowiak. Automatic detection and
classification of phoneme repetitions using htk toolkit. Journal of Medical
Informatics & Technologies, 17:141–148, 2011.

[29] Nöth E., Niemann H., Haderlein T., Decher M., Eysholdt U., Rosanowski F.,
and Wittenberg T. Automatic stuttering recognition using hidden markov
models. Proc. Int. Conf. on Spoken Language Processing, pages 65–68, 2000.

[30] W. Suszyński, W. Kuniszyk-Jóźkowiak, E. Smołka, and M. Dzieńkowski.
Automatic recognition of non-fluent stops. Annales UMCS Inform., pages
183–189, 2004.

[31] W. Suszyński, W. Kuniszyk-Jóźkowiak, E. Smołka, and M. Dzieńkowski.
Speech disfluency detection with the correlative method. Annales UMCS
Inform., AI 3:131–138, 2005.

Automatic Syllable Repetition Detection Methods in Continuous Speech 57

[32] W. Suszyński, W. Kuniszyk-Jóźkowiak, E. Smołka, and M. Wiśniewski.
Automatic detection. automatyczna detekcja wtrąceń. Varia Inform.,
Algorytmy i programy, Polskie Towarzystwo Informatyczne, Instytut
Informatyki Politechniki Lubelskiej, pages 105–113, 2006.

[33] I. Świetlicka, W. Kuniszyk-Jóźkowiak, and E. Smołka. Detection of syllable
repetition using two-stage artificial neural networks. Polish J. of Environ.
Stud., 17:462–466, 2008.

[34] L. Sin Chee, O. Chia Ai, M. Hariharan, and S. Yaacob. Mfcc based recognition
of repetitions and prolongations in stuttered speech using k-nn and lda.
Proceedings of IEEE Student Conference on Research and Development, pages
146–149, 2009.

[35] L. Sin Chee, O. Chia Ai, M. Hariharan, and S. Yaacob. Automatic detection
of prolongations and repetitions using lpcc. Proceedings of IEEE International
Conference on Technical Postgraduates, pages 1–4, 2009.

[36] I. Codello, W. Kuniszyk-Jóźkowiak, E. Smołka, and A. Kobus. Automatic
disordered sound repetition recognition in continuous speech using cwt and
kohonen network. Annales UMCS Inform, 2012.

[37] M. Hariharan, C.Y. Fook, R. Sindhu, A. H. Adoma, and S. Yaacob. Objective
evaluation of speech dysfluencies using wavelet packet transform with sample
entropy. DSP, 23:952–959, 2013.

[38] C. Y. Fook, H. Muthusamy, L. Sin Chee, S. B. Yaacob, and A. H. B. Adom.
Comparison of speech parameterization techniques for the classifcation of
speech disfluencies. Turkish J. of Electrical Engineering & Computer Sciences,
21:1983–1994, 2013.

[39] S. Oue, R. Marxer, and F. Rudzicz. Automatic dysfluency detection in
dysarthric speech using deep belief networks. SLPAT Interspeech 2015, pages
60–64, 2015.

[40] P. Mahesha and D.S. Vinod. Support vector machine-based stuttering
dysfluency classification using gmm supervectors. Int. J. Grid and Utility
Computing, 6, Nos. 3/4:143–149, 2015.

[41] P. Mahesha and D.S. Vinod. Gaussian mixture model based classification of
stuttering dysfluencies. J. Intell. Syst., 25(3):387–399, 2016.

[42] M. Manjutha, P. Subashini, M. Krishnaveni, and V. Narmadha. An optimized
cepstral feature selection method for dysfluencies classification using tamil
speech dataset. ISC2 2019, pages 671–677, 2019.

[43] F. Fassetti, I. Fassetti, and Nisticò S. Learning and detecting stuttering
disorders. AIAI 2019, pages 319–330, 2019.

[44] L. R. Rabiner and R. W. Schafer. Theory and applications of digital speech
processing, ch. 9. Pearson Higher Education, Inc, 2011.

58 A. Kobus, I. Codello, W. Kuniszyk-Jóźkowiak, G. M. Wójcik

[45] R. C. Snell and F. Milinazzo. Formant location from lpc analysis data. IEEE
Transactions on Speech and Audio Processing, 1, No. 2:129–134, 1993.

[46] B. Halberstam and L. J. Raphael. Vowel normalization: the role of fundamental
frequency and upper formants. Journal of Phonetics, 32:423–434, 2004.

[47] T. Millhouse, F. Clermont, and P. Davis. Exploring the importance of formant
bandwidths in the production of the singer’s formant. Proceedings of the 9th
Australian International Conference on Speech Science & Technology, pages
373–378, 2002.

[48] C. Kim, K. Seo, and W. Sung. A robust formant extraction algorithm
combining spectral peak picking and root polishing. EURASIP Journal on
Applied Signal Processing, 2006:1–16, 2006.

Exploring Recent Advancements of
Transformer Based Architectures in
Computer Vision

Michał Chromiak∗

1 Introduction

The problem of sequence transduction [11] in tasks such as speech recogni-
tion, text-to-speech transformation, machine translation, protein secondary struc-
ture prediction, Turing machines etc. has wide scope of applications. That is why
any progress in this area of research has a profound meaning. Emergence of the
Transformer based architectures was motivated by the complexity of existing so-
lutions like Wavenet, Bytenet O(nlogn) or ConvS2S O(n), but also their inability
to learn distant position dependencies in sequences [16]. Moreover, the sequential
nature of preceding solutions based on RNNs encoder-decoder schemes, have pro-
hibited parallelization. While the parallelization was possible with the CNNs, it
has another major drawback, which is the fact that the number of calculations
in parallel computation of the hidden representation, for input-output position
in sequence, grows with the distance between positions. Solving the sequence-to-
sequence(seq2seq) problems with the mentioned drawbacks of pre-Transformer ar-
chitectures was the motivation to invent a new approach.

Transformer has based its main idea purely on self-attention mechanism, that
has reduced the number of computations relating to input/output symbols to only
O(1), allowing to model dependencies regardless of their position in sequence, while
at the same time enabling the parallelization of computations. Transformer gains
this advantage with multi-head self-attention (MHSA) that enables it to model
dependencies regardless of their position in input, or output sentence.

1.1 Eliminating recurrence in machine translation

Transformer architecture is focused on the sequence-to-sequence model for Sta-
tistical Machine Translation (SMT) as introduced in [7]. It is based on an encoder-
decoder scheme. The encoder is transforming input sequence into its latent repre-
sentation, which is later decoded by the decoder, which in turn generates output in
form of a new sequence.

∗Corresponding author — michal.chromiak@mail.umcs.pl

59

60 M. Chromiak

Figure 1: General transformer architecture

Encoder ’s output encodes entire source sentence in form of fixed size vector
named: sentence embedding (for NLP tasks). Encoder includes six multi-head at-
tention blocks followed by position-wise FNN. The decoder, similarly to ByteNet
or ConvS2S, is stacked on top of the encoder.
Attention is general best described in [35]: “(. . .) as mapping a query and a set
of key-value pairs to an output, where the query, keys, values, and output are all
vectors. The output is computed as a weighted sum of the values, where the weight
assigned to each value is computed by a compatibility function of the query with
the corresponding key.”1.
Decoder is also composed of the same types of layers as encoder. Decoder’s input is
the output embedding of the encoder. Second layer is masked multihead-attention
which is modified variant to prevent positions from attending to subsequent po-
sitions. Additionally, stages 2, 3 and 4 (see Figure 1) use residual connections
following with normalization layer.

X-former models Due to the surge to improve parts of the vanilla Transformer,
there has been multiple research that aimed at providing new features, and op-

1For details of the scaled dot-dot product and multi-head attention please refer to [35] due to
limited scope of this paper.

Exploring Recent Advancements of Transformer Based Architectures in Computer Vision 61

timization changes2. Additionally, some of the far-reaching Transformer modifica-
tions were so deep that it even resulted with elimination of the decoder and using
only the encoder to learn representation — e.g. in case of the Bidirectional Encoder
Representations from Transformers — BERT [9] that uses masked language model.

1.2 Reducing the inductive bias with transformers

The attention-based approach was first applied in Long Short-Term Memory
(LSTM) networks [5], but has also been used successfully in a variety of natural
language processing tasks such as abstractive summarization, textual entailment,
or sentence representation learning [26, 28, 24].

With results on-pair, or improving state of the art, there has been extensive
research of Transformer based solutions for multiple modalities and tasks. The
discoveries made, lead to interesting general conclusions. It is worth noting that,
rather than being yet another architecture, Transformer is a general computation
approach, and by this, it is more of a general counterpart of multilayer perceptron
(MLP), than an architecture.

The specialized architectures based on LSTMs or CNNs are a very good so-
lutions however, they tend to introduce inductive priors. They work surprisingly
well as a built-in part of the architectures by incorporating processing knowledge
that does not have to be learned by e.g. MLP — thus, saving valuable training
resources.
MLP, as a form of a FFN, delivers an approximation engine that could technically
learn any function. However the problem is that it is unstable in terms of small
changes of data. The inductive priors such as CNNs help to refer local relations
of pixels, or regions and to generalize — similarly to how human vision could be
interpreted, allowing to infer based on the convolution based architecture. In NLP,
LSTMs play a similar role of solid inductive bias for language models by incor-
porating prior words information (in the form of memory) into understanding the
next word in a sentence.

The reason behind pre-wiring deep networks with generic, inductive innate
knowledge structures, that were considered “appropriate” for specific tasks, was
mostly due to insufficient amounts of data to learn a more general approaches. To
help models learn, the inductive bias components — such as CNNs or LSTMs —
were incorporated, enabling models to be useful, but at the same time making the
models biased towards a certain architectural solution.

Currently the amounts of available data has significantly increased thus, the
biases that initially were helpful, becomes a constraint for the neural network’s
function estimator, in terms of limiting its possibilities to learn better, or even
achieve the perfect match for the target estimated function. Therefore, in a situation
with enough data, the biased model will perform worse than the unbiased one. With
such interpretation, the CNN/LSTM could be treated as a specialized MLPs, while
the Transformer would be a more general version of MLP.

2The scope of this article is limited, but for a comprehensive Transformer model survey please
refer to [32] to understand the taxonomy of modern landscape for solutions such as: Reformer,
Linformer, Performer, Longformer, etc.

62 M. Chromiak

In this context, the Transformer is a more general version of compute framework
than MLP, as it is not only containing the every-to-every connection from MLP, but
also those connections are computed dynamically. With such design, Transformer
becomes the most general approach that the current mainstream deep learning
research is focused on. In general, with a higher number of data, the Transformer
can learn to approximate functions that with smaller amounts of data had to be
manually imposed within the architecture.

The effectiveness of Transformer applications are thus, more relying on its
generic approach and amounts of training data, than any pre-designed elements
— which is conversely to what takes place in case of the architectures based on
inductive biases.

2 Replacing recurrence for object detection

One of the major advantages of Transformers is the parallel processing of a se-
quence. It has been originally applied to the NLP tasks, but it can also be adopted
into the computer vision domain. Object detection is one of the major computer
vision tasks. Its goal is to predict a set of correct category labels and image bound-
ing boxes within the image. The DEtection TRansformer [3] is an architecture
that actually is applying the parallelization approach from Transformer paradigm
to image analysis. This allows to predict multiple objects in an image at once.
Additionally, it greatly simplifies the pipeline flow for this task comparing to previ-
ous state-of-the-art (SOTA) solutions by eliminating the need for hand-designed3,
custom elements that contain prior knowledge.

Previous state-of-the-art results for object detection task were achievable mostly
thanks to the highly optimized Faster R-CNNs [31]. Faster R-CNNs predicts object
bounding boxes by filtering from large set of candidate regions. However, the recur-
rence element of the approach shares similar drawbacks as in case of the NLP tasks.
Similarly to how vanilla Transformer has eliminated the recurrence from NLP do-
main, the DETR eliminates recurrent layers from object detection networks. The
DETR’s paper authors claim that it also is the first object detection framework to
embrace Transformer as its main component.
With earlier object detection solutions, predictions were focused on predicting only
one object from an image at a time, and repeating until all objects are accounted for.
Predecessors have also addressed object detection with bounding boxes and classes
in an indirect way and were based on multiple heuristics. Those include: hand-
designed elements of non-maximum suppression (removing duplicate regions), or
anchor generation — which actually required prior knowledge about the task. Ad-
ditionally, the previous attempts for object detection were also based on surrogate
regression and classification problems with large set of region proposals [30, 2] and
solutions such as anchors [22] or window centers [42, 33].

The key idea behind DETR is to combine non-autoregressive, thus parallel
decoding, with bipartite matching loss between ground truth and prediction, that
is invariant by a permutation of predictions, due to being based on Hungarian [19]
algorithm.

3Such as spatial anchors, or non-maximal suppression.

Exploring Recent Advancements of Transformer Based Architectures in Computer Vision 63

Transformer in this algorithm plays important role in terms of assuring that for
large bounding boxes their long range dependencies are communicating.

2.1 Advantages of Transformer based object detection

The Faster R-CNNs have been leading the object detection task benchmarks
for four years until the DETR has been introduced [3]. The DETR paper points
four characteristics to compare to Faster R-CNNs:

• architecture simplicity (see Figure 2)

• improved performance for detection of larger objects (due to Transformer
non-locality), however with lower performance for smaller objects

• improved precision (from 0.402 to 0.420)

• predicting objects in parallel (non-autoregressive decoding) instead of sequen-
tially (autoregressive decoding with RNNs)

In the computer vision domain, the CNNs are very useful to prepare images for
the neural network thus, DETR is using CNN to extract image features. The CNN
scales down an image with three channels into a higher lever representation with
multiple feature channels, while still preserving information about feature location
in the image.
Such a representation is fed into the transformer encoder-decoder block. The output
of Transformer component is a fixed number of N predictions in form of constant
size set of bounding boxes and classes predictions, per image. Each of those pre-
dictions is a tuple of a class (set of the classes including ’no object ’ — ∅) and a
bounding-box.

Figure 2: DETR [3] simplifies architecture comparing to Faster R-CNN by lever-
aging a standard Transformer to perform (potentially non-differentiable) object
detection operations

64 M. Chromiak

Figure 3: Combining CNN to detect features and Transformer encoder-decoder
architecture to detect objects, enables DETR [3] to directly predict final set of
detected object in parallel

The detection transformer algorithm uses a database of human-annotated
bounding boxes that will be used as a target for a supervised learning task. Out-
put of the algorithm will often result with bounding boxes that would overlap
each other, or contain only a part of the actual object in the image. Additionally,
the annotated images do not contain the no-object class label. The answer that
DETER has to those issues, is to train end-to-end with a set-based global loss,
enabling unique assignment between the ground-truth objects and the predictions
(using bipartite matching loss). The final detection predictions are produced by
FFN layers that process the object features into classes and bounding boxes while
the unassigned predictions becomes the no object.

Compared to original Transformer [35], the difference is in the decoder phase.
It is based on the fact that there are N objects decoded in parallel in each
decoder layer, while in the vanilla Transformer, the model is autoregressive and
predicts the output one by one in the form of a sequence. The decoder outputs
N embeddings that are next independently decoded by FFN into the final (class,
bounding-box) predicted tuples. One important parameter is N — which is the
max number of object to detect from an image, and therefore is expected to be
significantly larger than average number of objects in an image.

2.1.1 Bipartite matching loss

One of DETR’s key characteristics is the ability to emit predictions in parallel.
It is possible by dint of permutation invariant loss function that uniquely assigns
a prediction to ground truth object.

Exploring Recent Advancements of Transformer Based Architectures in Computer Vision 65

Figure 4: Bipartite matching loss

The scoring of N predictions4 set ŷ = {ŷi}Ni=1 against the ground truth set5 y is
produced by the proposed loss. Predictions are assigned 1-to-1 to ground truth,
such that the total loss is minimized.
To minimize such bipartite matching, one needs to search for a permutation of
N elements: σ ∈ SN

6 with the lowest pair-wise matching cost Lmatch(yi, ŷσ(i))
computed efficiently with Hungarian algorithm. This cost considers similarity of
class and the bounding box predictions to the ground truth.

σ̂ = argmin
σ∈SN

N∑
i

Lmatch(yi, ŷσ(i)) (1)

2.2 General architecture of detection transformer

The DETR’s image processing backbone is based on CNN feature map extrac-
tion, using 1 × 1 convolution. As an outcome it produces the higher level image
representation in low resolution, scaled down, and with many more feature chan-
nels. This transformation however, preserves the feature location information. As
transformer is expecting a sequential input, the input for encoder is first collapsed
into one dimension vector. Because transformers are permutation invariant, the
flattened input vector is supplemented with a positional encoding. In the next
step, the decoder attends to encoder output with learned positional embeddings
(object queries). The decoder’s output embedding is fed to a shared FFN that pre-
dicts a detection (class, bounding box) or a no object. Finally, FNN predicts the
normalized center coordinates and size: height and width of the box with respect
to the input image, while the linear layer predicts the class label using a softmax
function.

The set of N learned object queries enables inference about relations between
objects and their relations within an entire image context. Decoder takes the output
embedding produced by encoder and N object queries, as an input. The decoder’s
output is the result of transformation made to object queries conditioned on the
encoder outputs (see Figure 6).

4The bounding box from the prediction tuples is expressed here as a position (x,y) and size
(height,width).

5Padded to the size of N with ∅ (no object) — see Figure 4
6SN denotes a group of all permutations of N -element set

66 M. Chromiak

Figure 5: DETR [3]: The CNN representation of image supplemented with posi-
tional encodings is fed into the Transformer encoder

The output embeddings of decoder — produced from object queries — goes
independently to FFN classifier, that decodes them into N (class, bounding box)
predictions (see Figure 5). The object queries, in form of learned positional encod-
ings, are required as the decoder is permutation-invariant and thus, for different
results requires different input embeddings. The object queries might be perceived
as specialized detectors for specific size of bounding boxes, within specific areas of
the image.

Figure 6: The object queries in DETR are transformed based on the image infor-
mation coming from the encoder’s output

Exploring Recent Advancements of Transformer Based Architectures in Computer Vision 67

Specialization of object queries is progressing upwards, with higher layers of
decoder. The object queries (in the form of vectors) are trained to ask different
questions depending on the size and location of the bounding box. It is exactly
what attention mechanism is after. It will attend more to specific parts of the
encoder embeddings — ie. the side input of decoder — getting more information
as it sends requests in form of Query vectors (as of the attention mechanism) to
the encoder output, and receiving the Value responses from parts that correspond
to the features requested by the sent query — Q (see Figure 6).

Thanks to different object queries, the decoder output is going to be focused
around different classes and different bounding boxes in different regions. The im-
portant insight is that — as this is transformer — the vectors not only incorporate
information form the image, but also can attend (communicate) with each other,
in all of the layers. This is useful to determine that each object query is focused on
unique region, class and bounding box size. Such architecture impose results to be
more, and more precise along the higher layers of decoder.

2.2.1 Performance comparison and potential improvements

DETR has been compared with Faster R-CNN in quantitative evaluation on
COCO dataset [23] (see Table 1). While DETR has proven to be less efficient for
detecting smaller objects comparing to Faster R-CNN, it should be noted, that
the Faster R-CNN has been equipped with multiple design improvements since the
baseline publication. DETR is a relatively new model and there is still space for
potential improvements, similarly to how Feature Pyramid Networks (FPN) [21]
did for Faster R-CNN.

Table 1: For COCO validation ser the comparison of DETR with Faster R-CNN
with ResNet-50 and ResNet-101 backbone [3]

3 Replacing CNNs in computer vision

While the Transformers in natural language processing (NLP) has become a
leading standard, in vision — the dominant solution are based on convolution

68 M. Chromiak

architectures [20, 18, 12]. Even the recent Transformer based solutions such as
DETR [3] include CNN components in their end-to-end pipeline.

The difficulty with replacing convolutions by transformers is computation com-
plexity of attention layers. For sequence processing, transformers takes a set of
tokens as an input and process it with quadratic operation in form of attention
layers7. It is one of the main limitations of transformers in terms of memory and
computing requirements. For this reason, raster images that are to be processed by
algorithm, even for a small resolution of a couple hundred pixels, means that for
an image of n×n there will be (n2)2 operations which do not scale well for realistic
input image sizes.

The hybrid approach is to combine the convnets with forms of adaptation of
the self-attention. This is the approach already mentioned in section 2, but also
in [37, 14, 39] where the CNN output is being processed with self-attention for
object detection task. Other solutions are based also on augmenting feature maps
for image classification [1] or even unsupervised image detection with so called slot
attention [25].

A more radical approach8 [27, 29] was to eliminate convolutions at all, and fo-
cused on restricting the global self-attention mechanism to attend local neighbor-
hoods for each query pixel. This arrangement resembles convolutions with learning
sliding kernels that are local thus, the receptive field is growing by depth9 across
the layers. A local multi-head, self-attention blocks approach has been manifested
also in: [15] — defining layer weights based on composability of local pixel pairs
similarity, [29] — by swapping spacial convolution layer with self-attention layer in
ResNet model, or in [41] — replacing convolution with pairwise10, and patchwise11

self-attention.
Another approach is to use scalable approximation on global self-attention. It

is based on sparse factorizations of attention matrix into several, faster attention
operations that are later combined to approximate dense attention operation [6].
Finally there has been also research aimed at decomposing attention into blocks
of varying sizes [38], or along axis with models employing local region attention
stacking12 in the form of axial attention [36, 13].

The previous approaches of eliminating convolutions ([29, 36]) have presented
promising experiments however, as claimed in [10], due to use of specialized atten-
tion patterns those other solutions require complex engineering to be implemented
efficiently on hardware accelerators thus, have not yet been scaled to use their full
potential.

On top of the previous, above-mentioned research, a new (as of 2020) approach

7This is due to the fact that attention requires pair-wise inner product between each pair of
input tokens.

8From some of the authors of original the Transformer paper.
9In contrast, transformers are able to attend within a single layer to every input token.

10Which is a set operator rather than sequence operator — as the convolution. Unlike convo-
lution it does not couple stationary weights to specific locations and is invariant to permutation
and cardinality

11Which is not permutation-invariant, cardinality-invariant nor a set operation however, the
weight computation can index feature vectors individually by location, while associating informa-
tion from different locations.

12The locality constraint limits model’s receptive field which is an issue especially for tasks such
as high resolution segmentation tasks.

Exploring Recent Advancements of Transformer Based Architectures in Computer Vision 69

has been developed. This time the difference is how the input image is prepro-
cessed. Every image is dissected into a set of non-overlapping patches. Next, a full
self-attention is applied on top. It is based on research [8] which shows that the
original Transformer is competitive to state-of-the-art convnets, by proving that
the multi-head self-attention (MHSA) layer can represent a convolutional filter.
The idea has been developed further in a very simple solution of fully Transformer
based image recognition model [10]. The patch size has been increased from 2× 2
(applicable to small resolution images) to 16×16 pixels — enabling use of medium
size images, and tested on large scale experiments. Experiments presented in the
paper show that, for small/mid-sized images, benchmarks produce comparable re-
sults to CNN based networks with less computational resources used for training.

3.1 Vision Transformer architecture

The transformers are able to attend with a single layer to the entire area of
interest. In case of vision this area is an image. ViT use global attention by decom-
posing image into patches of 16×16 pixels. As all layers of Transformer use constant
latent vector, the flattened patches are mapped to fixed size with a trainable linear
projection by multiplying with an embedding matrix. The result is referred to as
patch embedding. As transformers are also permutation invariant, the unrolled set of
patches is combined with position, learnable embedding vectors, that are added to
the patch embeddings to encode the position information. Such output becomes an
input to vanilla Transformer encoder (see Figure 7). Similarly to BERT [9] model,
a dedicated classification learnable embedding token13 [class] is prepended to the
encoder input and the final image classification is based on its output in last layer.

Figure 7: Vision Transformer general architecture [10]

13Not associated with any patch.

70 M. Chromiak

3.2 Advantages of using only Transformer for vision

The Vision Transformer (ViT) [10] is one of the most recent advances in the
area of fully Transformer based approach for vision tasks. It is a manifestation of
the inductive bias reduction (as discussed in section 1.2 by replacing the CNN part.

As the experiments show, the amounts of data that has been used (14M-300M
images)14 was sufficient, for Transformer to learn the knowledge representing CNN-
alike structures, that has been manually incorporated in the previous solutions
(inductive bias — see 1.2). In contrast to CNN15, ViT contain the locality and
translation equivariance only with MLP layers, while the self-attention layers are
global.
ViT also does not inject all information about the 2D nature of an input image, such
as position and spacial relations between patches. The only part that explicitly uses
the concept of 2D nature is splitting the image into patches and adjusting positional
embeddings for images of different resolutions.

Despite the fact that ViT do not introduce image-specific inductive biases into
its design, it is able to learn similar characteristics as CNN based architectures.
This can be easily seen when referring to the learned filters of the initial linear
embeddings of RGB values (see Figure 8 — left). We can see some kind of — learned
— filters that are very similar to the filters16 that in the past were manually built
into the architectures like convnets.

Additionally, in contrast to CNNs, some of the ViT’s heads are already attend-
ing to large distances from the pixel even for small network depth (see Figure 8
— right), instead of retaining constant distance as in CNNs. This way, the Trans-
former can already pay attention to long distance relations in the initial layers.
With increase of the network’s depth, the attention/receptive distance grows for
all heads becoming almost global. With convnet (or local attention), this would
have been more of a constant increase in size of the effective receptive field.

Interestingly, recent research [34] also shows that vision transformers similarly
to humans are more biased towards shapes than convnets.

3.3 ViT performance comparison

The competing solutions were based on supervised transfer learning with large
ResNets — Big Transfer (BiT) [17], and the EfficientNet defined in a semi-
supervised way with removed labels [40] — Noisy Student. In both comparisons
the ViT used substantially less computation resources for pre-training and outper-
formed, or was comparable to the remaining solutions.

3.4 Self-supervision in vision transformer

One of the last interesting aspect (however not fully investigated) of full Trans-
former approach to vision with ViT is use self-supervised approach similarly to

14Pre-trained ImageNet-21k and JFT-300M datasets.
15The locality, 2D neighborhood structure plus the translation equivalence are present in each

layer of the architecture.
16Like the filter at position (1,3) Figure8 — which looks much like a wavelet filter.

Exploring Recent Advancements of Transformer Based Architectures in Computer Vision 71

Figure 8: Left: Learned linear embedding filters Center: Learned positional em-
beddings of patches and their similarity across row and column. Right: Relation
between size of attended area by head and network depth — mean attention dis-
tance. Source: [10]

what have been done with BERT’s [9] masked approach, or GPT/iGPT [4] lan-
guage modeling. The masked patch prediction has been proven on prediction task
for 3bit, mean color (512 colors in total) of every corrupted patch with 79,9%
accuracy on ImageNet which is 4% worse than supervised pre-training.

Table 2: ViT [10] state-of-the-art comparison benchmarks

4 Summary

The general nature of Transformer based architectures has proven to be cur-
rently state of the art solution for solving problems across multiple domains of
natural language processing, vision or speech recognition. All of the preceding,
hand designed inductive biases, such as the long short-term memory or convolu-
tional neural networks and recurrence, that has been compared against Transformer
counterparts are matched, or exceeded, in terms of either performance or accuracy.
However, immense amounts of data that is currently available for the training
phase, favors the learning approach over imposed design. The experiments show
that the approaches based on biases learned from scratch, are not only similar, but
more exact for the evaluated tasks, than a hand crafted, built-in ones.

72 M. Chromiak

Transformer as a computing framework has multiple flavors especially in com-
puter vision, but there is still space to propose even more generic design.

References

[1] Irwan Bello, Barret Zoph, Quoc Le, Ashish Vaswani, and Jonathon Shlens. At-
tention augmented convolutional networks. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 3285–3294, 2019.

[2] Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN: high quality object
detection and instance segmentation. CoRR, abs/1906.09756, 2019.

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexan-
der Kirillov, and Sergey Zagoruyko. End-to-end object detection with trans-
formers. CoRR, abs/2005.12872, 2020.

[4] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan,
and Ilya Sutskever. Generative pretraining from pixels. In Hal Daumé III
and Aarti Singh, editors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 1691–1703. PMLR, 13–18 Jul 2020.

[5] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-
networks for machine reading. CoRR, abs/1601.06733, 2016.

[6] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long
sequences with sparse transformers. CoRR, abs/1904.10509, 2019.

[7] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. CoRR, abs/1406.1078,
2014.

[8] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the re-
lationship between self-attention and convolutional layers. In International
Conference on Learning Representations, 2020.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at scale. In Interna-
tional Conference on Learning Representations, 2021.

Exploring Recent Advancements of Transformer Based Architectures in Computer Vision 73

[11] Alex Graves. Sequence transduction with recurrent neural networks, 2012.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778, 2016.

[13] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial
attention in multidimensional transformers. CoRR, abs/1912.12180, 2019.

[14] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation
networks for object detection. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3588–3597, 2018.

[15] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local relation networks
for image recognition. CoRR, abs/1904.11491, 2019.

[16] John F. Kolen and Stefan C. Kremer. Gradient Flow in Recurrent Nets: The
Difficulty of Learning LongTerm Dependencies, pages 237–243. 2001.

[17] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica
Yung, Sylvain Gelly, and Neil Houlsby. Large scale learning of general visual
representations for transfer. CoRR, abs/1912.11370, 2019.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 25. Curran Associates, Inc., 2012.

[19] H. W. Kuhn and Bryn Yaw. The hungarian method for the assignment prob-
lem. Naval Res. Logist. Quart, pages 83–97, 1955.

[20] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. Backpropagation applied to handwritten zip code recogni-
tion. Neural Computation, 1(4):541–551, 1989.

[21] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariha-
ran, and Serge Belongie. Feature pyramid networks for object detection. In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 936–944, 2017.

[22] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection. In 2017 IEEE International Conference
on Computer Vision (ICCV), pages 2999–3007, 2017.

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common
objects in context. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne
Tuytelaars, editors, Computer Vision – ECCV 2014. Springer International
Publishing, 2014.

[24] Zhouhan Lin, Minwei Feng, C’ıcero Nogueira dos Santos, Mo Yu, Bing Xi-
ang, Bowen Zhou, and Yoshua Bengio. A structured self-attentive sentence
embedding. CoRR, abs/1703.03130, 2017.

74 M. Chromiak

[25] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Ma-
hendran, Georg Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas
Kipf. Object-centric learning with slot attention. CoRR, abs/2006.15055,
2020.

[26] Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit.
A decomposable attention model for natural language inference. CoRR,
abs/1606.01933, 2016.

[27] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer,
Alexander Ku, and Dustin Tran. Image transformer. In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 4055–4064. PMLR, 10–15 Jul 2018.

[28] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accu-
rate, compact, and interpretable tree annotation. In Proceedings of the 21st In-
ternational Conference on Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics, pages 433–440, Sydney,
Australia, July 2006. Association for Computational Linguistics.

[29] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm
Levskaya, and Jon Shlens. Stand-alone self-attention in vision models. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[30] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-
wards real-time object detection with region proposal networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

[31] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN:
towards real-time object detection with region proposal networks. CoRR,
abs/1506.01497, 2015.

[32] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient trans-
formers: A survey. CoRR, abs/2009.06732, 2020.

[33] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional
one-stage object detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019.

[34] Shikhar Tuli, Ishita Dasgupta, Erin Grant, and Thomas L. Griffiths. Are
convolutional neural networks or transformers more like human vision?, 2021.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

Exploring Recent Advancements of Transformer Based Architectures in Computer Vision 75

[36] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan L. Yuille, and
Liang-Chieh Chen. Axial-deeplab: Stand-alone axial-attention for panoptic
segmentation. CoRR, abs/2003.07853, 2020.

[37] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local
neural networks. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7794–7803, 2018.

[38] Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit. Scaling autoregres-
sive video models. In International Conference on Learning Representations,
2020.

[39] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang,
Masayoshi Tomizuka, Kurt Keutzer, and Peter Vajda. Visual transformers:
Token-based image representation and processing for computer vision. CoRR,
abs/2006.03677, 2020.

[40] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V. Le. Self-training
with noisy student improves imagenet classification. In 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 10684–
10695, 2020.

[41] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring self-attention for
image recognition. CoRR, abs/2004.13621, 2020.

[42] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points, 2019.

Automating the Comparison of
Areas and Data of Administrative
Units From Different Periods on
the Example of Poland (1937 and
2019)

Filip Berezowski
Jarosław Bylina∗

1 Introduction

This manuscript is devoted to the issue of automatic comparison of areas and
data of administrative units from different periods. State administrative boundaries
change over the years. As a result, statistical information cannot be compared 100%
in many cases. For this reason, methods are needed that can do this with the most
accurate result possible.

We can divide the essence of this problem into two issues. The first is the geom-
etry of the administrative units that we compare with each other. We must be able
to automatically determine whether certain areas intersect with each other, and if
so, to what extent. This is very important because it affects the accuracy of the
statement. The second is the methodology — how to compare the same statistical
data once we can determine the geometric similarity of administrative units. For
example, the administrative boundaries from 1937 and the current boundaries from
2019 will be used to compare the program. We will use the Python language to im-
plement the program with the use of relatively easy-to-use libraries that can read,
analyze and write spatial data. The compatible Shapely [1] and Fiona libraries are
ideal for this purpose.

The foundations of the contemporary Polish territorial division, made after
World War I, are related to the post-partition era [2]. The partitioning states
(Russia, Austria and Prussia) introduced their own administrative and territorial
institutions in place of the Polish territorial division. In the second half of the 19th
century, changes in the administrative division in the former Polish-Lithuanian

∗Corresponding author — jaroslaw.bylina@umcs.pl

77

78 F. Berezowski, J. Bylina

Commonwealth deepened. The reborn Polish State after its partitioning powers
received an extremely diversified territorial and administrative shape of the lands.

For us, the act on changes to the borders of the Pomeranian, Poznań, Warsaw
and Łódź voivodeships of June 12, 1937, is particularly important [3]. This act is
an example of legal regulations aimed at blurring the borders of the partition. The
administrative units included in this act are of key importance for identifying the
compliance of maps with the assumptions of the act (Figure 1). We will use this
boundary data later in the work to compare these time periods.

The territorial division currently existing in Poland was introduced according
to the Act of August 24, 1998 on the introduction of the basic three-tier territorial
division of the state [4].

Another important legal act regulating the territorial division of the state at
the county level was the ordinance of the Council of Ministers of August 7, 1998 on
the establishment of counties [5]. At that time, a total of 308 counties were created
in Poland, including 65 cities with county status (the so-called urban counties).
In many cases, this rank was given to cities which, as a result of the reform of
the administrative division, lost the rights of voivoideship cities and the related
privileges.

Until now, the number of voivoideships in Poland has not changed. The state
of affairs as of January 1, 2019 is as follows: 16 voivoideships, 2478 communes (also
included 66 cities with county rights), 314 counties, 66 cities with counties rights,
930 cities and 52,497 rural towns [6].

2 Methodology of the algorithm

2.1 Recreating the geometry in the program

The administrative units used by the program are polygons, but this classifica-
tion is too narrow to fully recreate the geometry for operations in Shapely classes.
Each object must be assigned to the category: polygon without rings, a polygon
with rings, multipolygon without rings, multipolygon with rings (Figure 3).

The coordinates of the points are written in two-element tuples. The polygon
is saved as a list of tuples with coordinates inside the next list. If the first-order
list is single-element, then it is a polygon without rings, otherwise, it is a polygon
with rings. A multipolygon is an object composed of many polygons. There is
an additional list in its notation. Now the number of elements in the first-order
list corresponds to the number of polygons that make up the multi-polygon. The
number of elements in the second-order list shows whether the polygon included in
the multipolygon has rings. Items in the third-order list are the point coordinates
for the corresponding parts. The program includes a function that is responsible
for taking a polygon from a vector layer and converting it into a Shapely library
class.

def get_polygon_from_feature_class(fc_pol):
geom_type = fc_pol[’geometry’][’type’]
geom_coor = fc_pol[’geometry’][’coordinates’]
geom_no_part = len(geom_coor)

Automating the Comparison of Areas and Data of Administrative Units From Different. . . 79

Figure 1: Administrative division of the Republic of Poland from 1937 (own study)

if geom_type == ’Polygon’:
#Polygon without rings
if geom_no_part == 1:

shapely_pol = Polygon(geom_coor[0])
#Polygon with rings
else:

shapely_pol = Polygon(geom_coor[0], geom_coor[1:])

elif geom_type == ’MultiPolygon’:
pol_list = []
for i in range(geom_no_part):

geom_no_ring = len(geom_coor[i])

80 F. Berezowski, J. Bylina

Figure 2: Administrative division of Poland based on data from the state register
of borders and areas of territorial division units of the country — PRG (as of 28
April 2020; own study)

Figure 3: Polygon geometry types: polygon without rings (green), polygon with
rings (blue), multipolygon without rings (yellow), multipolygon with rings (pink)

Automating the Comparison of Areas and Data of Administrative Units From Different. . . 81

#Multipolygon without rings
if geom_no_ring == 1:

shapely_multi_pol = Polygon(geom_coor[i][0])
#Multipolygon with rings
else:

shapely_multi_pol = Polygon(geom_coor[i][0],
geom_coor[i][1:])

pol_list.append(shapely_multi_pol)
shapely_pol = MultiPolygon(pol_list)

return shapely_pol

2.2 Comparing the geometry of administrative units

An important part of the program is the compilation of the geometry of ad-
ministrative units in different variants. For each of them, data preparation will be
different. All options must also return some values. These values are indicators
that show the ratio of the common area to the area for a unit or administrative
units from one period, as well as the geometry of the common area. There are four
variants in the program:

• 1:1 — comparison of one ‘old’ county with one ‘new’ county

• 1:2 — comparison of one ‘old’ county with two ‘new’ counties

• 2:1 — comparison of two ‘old’ counties with one ‘new’ county

• 2:2 — comparison of two ‘old’ counties with two ‘new’ counties

The comparison for the 1:1 variant is the easiest to implement. We do not
have to interfere with the geometry of objects within one layer. Instead, we can
proceed with the statement immediately. We will use the comparasion_one_to_one
function for this. In the first step, this function checks if the polygons intersect with
each other. If not, the function returns a tuple (0, 0, 0). Otherwise, a polygon is
created that is a common part of the polygons. Then the indicators are calculated
according to the formulas:

indotn =
areac
areao

(1)

indnto =
areac
arean

(2)

where:

• indotn — ratio of the common area to the area of the ‘old’ county

• indnto — ratio of the common area to the area of the ‘new’ county

• powc — the common area of ‘old’ and ‘new’ counties

• pown — the area of the ‘new’ county

82 F. Berezowski, J. Bylina

• powo — the area of the ‘old’ county

The formulas and the function are so universal that after some data preparation,
they are used by all created variants. The described function looks like this:

def comparasion_one_to_one(pol1, pol2):
if pol1.intersects(pol2):

pol_inter = pol1.intersection(pol2)
old_in_present_per = pol_inter.area/pol2.area*100
present_in_old_per = pol_inter.area/pol1.area*100
return old_in_present_per, present_in_old_per, pol_inter

else:
return 0, 0, 0

Option 2:2 is the most difficult to implement. First, we need to find pairs of
units that are adjacent to each other. Only connections that meet this condition
will be considered for comparison. Before that, however, the polygons are merged
into a single feature. In the program, the function create_duo_polygon_list is
responsible for this problem. When the criterion is met, such a polygon is stored
inside the list with additional parameters such as the coordinates of the enclosing
frame needed in the next sorting process of the list, an ID for both polygons from
the pair needed for later writing information in the list. The function is also used
in variants 1:2 and 2:1. It is then performed only once for a specific layer. The
described function looks like this:

def create_duo_polygon_list(list_pol):
list_pol_duo = []
for i, shapely_pol_1_1 in enumerate(list_pol):

for j, shapely_pol_1_2 in enumerate(list_pol):
if j < i:

if shapely_pol_1_1[1].intersects(
shapely_pol_1_2[1]):
pol_duo = shapely_pol_1_1[1].union(

shapely_pol_1_2[1])
list_pol_duo.append(

[pol_duo.bounds, pol_duo, i, j])
return list_pol_duo

This way the question is for comparison, but to speed up the process there
is mergesort. Sorting using this method consists of dividing the list into n list of
one-elements1. Successive lists are combined into larger sorted lists until one sorted
n-element list is obtained. The described function looks like this:

def mergesort(list_1):
if len(list_1)>1:

mid = len(list_1)//2
1For us, this means a list with four elements, where the sorting element is the minimum

longitude value of the frame surrounding the connected polygons.

Automating the Comparison of Areas and Data of Administrative Units From Different. . . 83

list_left = list_1[:mid]
list_right = list_1[mid:]
mergesort(list_left)
mergesort(list_right)
i = 0
j = 0
k = 0
while i<len(list_left) and j<len(list_right):

if list_left[i][0][0]<list_right[j][0][0]:
list_1[k] = list_left[i]
i += 1
k += 1

else:
list_1[k] = list_right[j]
j += 1
k += 1

while i<len(list_left):
list_1[k] = list_left[i]
i += 1
k += 1

while j<len(list_right):
list_1[k] = list_right[j]
j += 1
k += 1

2.3 Thresholds for further calculations

At this stage, we managed to compare the geometry of the administrative units
in four different variants. However, not every intersection of two polygons will
allow us to compile statistics for individual counties. It should be verified through
thresholds which polygons can be used for further analysis.

First of all, it is worth noting that among the compared objects there are
not those that are identical. This is due to errors made during data vectorization
or errors resulting from a certain simplification of the data compared to the ac-
tual boundaries. Due to the circumstances, it is worth considering the percentage
threshold of layer interpenetration, after which it should be considered that these
units are identical. Too low a threshold reduces the credibility of the results, while
too high a threshold increases the number of operations that the program must
perform. A consistency of more than 95% in both indswn and indnws indicators
happens very rarely, so it was chosen as the threshold in this case. Then the border
deviations are very small (Figure 4).

On the other hand, it is worth considering at what point we can speak of
a comparison of, for example, two counties. Returning the results when there is
overlapping in 10% of the area can cause significant errors in the calculation of
areas that have changed a lot in the periods checked. For different input data,
the threshold will be variable, because we will be balancing between the coverage
of the largest possible area and the errors resulting from the small influence of

84 F. Berezowski, J. Bylina

Figure 4: Comparison of two pairs of counties: Tczewski (left) and Mielecki (right).
The borders from 1937 are marked in green and the present ones in red. Numerical
values are relevant indicators for a given period

the area overlap on the statistical data. This threshold allows minimizing errors
related to the vectorization of polygons. This is very important for the credibility
of the results. For counties that are the subject of our research, three thresholds of
60%, 65% and 70% (Figure 5, 6, 7 i 8) have been checked. The comparison shows
that the 60% threshold is the most effective. Almost the entire area overlapping
can be expressed in one of the variants. Only three areas do not meet the criterion:
Warsaw and its surroundings, Łódź and its surroundings, and the area of the former
Śląskie Voivodeship (Figure 9), Łódź and Warsaw have significantly enlarged over
the course of 100 years. For this reason, the borders of the neighboring counties have
changed significantly compared to the situation in the Second Polish Republic. The
entire present-day Silesian Voivodeship has a completely different structure than
that of 1937. and it is not possible to compare them under the assumptions made.

2.4 Population calculations

In the previous steps, we made an initial selection among the surveyed counties.
Now we are able to count the number of people for the common part of admin-
istrative units. The data that we have obtained from various sources allows us
to approach the matter in two ways — using information about the population
number or using information about the population density in the counties. In both
cases, the results for the 1:1 variant are identical.

The first one is important because we will have more information on this topic.
We assume that the population density for the entire area is constant. Then the
populations in the common part can be expressed as the product of the ratio of
the area of the common part to the area of the county and the population of the
whole county.

popos = popotn · popo (3)

Automating the Comparison of Areas and Data of Administrative Units From Different. . . 85

Figure 5: Comparison of the results from the 1:1 variant from the three thresholds
60%, 65% and 70% for the entire research area

Figure 6: Comparison of the results from the 2:2 variant from the three thresholds
60%, 65% and 70% for the entire research area

86 F. Berezowski, J. Bylina

Figure 7: Comparison of the results from the 2:1 variant from the three thresholds
60%, 65% and 70% for the entire research area

Figure 8: Comparison of the results from the 1:2 variant from the three thresholds
60%, 65% and 70% for the entire research area

Automating the Comparison of Areas and Data of Administrative Units From Different. . . 87

Figure 9: Three regions that do not meet the criterion of overlapping in at least
60% (From the left: Łódź and its surroundings, the Silesian Voivodeship, Warsaw
and its surroundings)

popns = popnto · popn (4)

where:

• popos — population number recorded in the “old” county in the part shared
with the “new” county

• popns — population number recorded in the “new” county in the part shared
with the “old” county

• popotn — ratio of the common area to the “new” county area, calculated from
the formula(1)

• popnto — ratio of the common area to the “old” county area, calculated from
the formula(2)

• popo — population in the “old” county

• popn — population in the “new” county

The pattern, however, has its drawbacks. The most important assumption is
that the entire county has the same population density. Administrative units consist
of several smaller or larger towns and the population density is the highest there.
Additionally, the population itself in the county may be burdened with a statistical
error, which directly influences the increase of the margin of error in the calculated
value.

88 F. Berezowski, J. Bylina

It is worth looking for a different approach to the issue. The Second General
Census in Poland makes this opportunity possible. You can find separate infor-
mation on the urban and rural population density in the overview. Moreover,
at present some cities operate with county status. The combination of these
relationships partially solves the problem of uniform population density. We are
able to distinguish a situation in which the appropriate size for individual counties
should be used. The patterns in individual cases are as follows:

when the ‘old’ county is compared with the land county

popold = indoldinpre · denv · powold (5)

when the ‘old’ county is compared with the township county

popold = indoldinpre · dent · areao (6)

for a ‘new’ county with no density distinctions

poppre = indpreinold · den · arean (7)

where:

• popold — population of the “old” county in the compared area

• poppre — population of the “new” county in the compared area

• indpreinold — ratio of the common area to the “new” county area, calculated
from the formula (1)

• indnws — ratio of the common area to the “old” county area, calculated from
the formula (2)

• denv — population density in the countryside in the “old” county per km2

• dent — population density in]cities w “old” county per km2

• den — population density in the “new” county per km2

• areao — area “old” county in km2

• arean — area “new” county in km2

Unfortunately, we achieve reliable comparison results with the 1:1 variant. The
smaller the areas are juxtaposed, the greater the chance of overestimating the
population size. There may also be errors caused by incorrect calculation of the
area for the administrative unit (vectorization errors, use of the wrong coordinate
system).

Automating the Comparison of Areas and Data of Administrative Units From Different. . . 89

3 Tests and summary
The program was tested for all four variants of the comparison and also for the

1:1 case for both methods of calculating the population size. Shapefile results can
be opened in any GIS software that supports this format. On the other hand, the
results in the form of a text file in .txt format can be easily transformed into a pivot
table in a spreadsheet. This file does not contain information about the geometry
of objects, but you can use the software to create a relationship between the result
file and one of the layers used in the program based on the identifiers of objects.

For the 1:1 variant, the indices indswn and indnws have the same values for
both calculation methods (Figure 10). The present boundaries of counties more
often reach the values of 90% and more. The results in the table for both methods
for several pairs are identical (Figure 11). The maximum difference in the number
of people between the methods is 92 9572. The average difference is 11 872.41. In
both cases, 96 pairs of counties were found.

For 2:2 comparisons, 354 joins met the criteria. As in the previous case, the
boundaries of the present counties had a greater share in the area of the common
part in relation to the area of the entire counties (Figure 12). A comparison of
Śremski and Poznański counties from 1937 to the present City of Poznań and
Poznań counties shows the largest difference in the number of inhabitants (106 045
in 1937, 639 650 — now), which is 533 605 (Figure 13). In 169 records, we can
see a greater number of inhabitants living in the common area in 1937 than today.
The biggest difference can be observed when comparing Tarnogórski and Lubliniec
counties with each other, it amounts to 191 424 (131 928 — now, 323 352 — in
1937). On average, for the entire area of comparisons, the number of inhabitants
increased by 11062 people.

Variant 2:1 shows 23 comparisons. Most of them are located in the following
voivodeships: Pomorskie (now Kujawsko-Pomorskie) and Poznań (now Wielkopol-
skie). Once again, the boundaries of the current counties had a greater share in the
area of the common part in relation to the area of the entire counties (Figure 14, 15).
On average, for the entire area of comparisons, the population increased by 4056
people.

Variant 1:2 returned 142 objects. Among them, the largest difference in the
number of people was 366 746 (Figure 17). On the other hand, the largest decrease
in the number of people can be observed in the present area of the Leżajsk and
Łańcut counties compared to the former Łańcut county, it amounts to 106 931. On
average, for the entire area of comparisons, the population dropped by 29 325 osób.
Here, the boundaries of the counties from 1937 had a greater share in the area of
the common part in relation to the area of the entire counties (Figure 16).

This research is a basis for the next work. Namely, the aim is to allow the
machine to choose propper areas (that is, the ones which are sufficiently similar)
on its own, and compare their available data for their respective periods.

2For the Lubliniec county in the Śląskie voivoideship method 1 — 233 939, method 2 —
140 982.

90 F. Berezowski, J. Bylina

Figure 10: Common parts of counties for variant 1:1. On the left, classified by index
indotn, and on the right indnto

Figure 11: Fragment of the result layer attributes table for the 1:1 variant. The
records marked in blue are counties with the same population, calculated using
two methods

Automating the Comparison of Areas and Data of Administrative Units From Different. . . 91

Figure 12: Common parts of counties for variant 2:2. On the left, classified by index
indotn, and on the right indnto

Figure 13: Fragment of the result layer attributes table for the 2:2 variant

92 F. Berezowski, J. Bylina

Figure 14: Common parts of counties for variant 2:1. On the left, classified by index
indotn, and on the right indnto

Figure 15: Result layer attributes table for the 2:1 variant with an additional column
with the difference in population number

Automating the Comparison of Areas and Data of Administrative Units From Different. . . 93

Figure 16: Common parts of counties for variant 1:2. On the left, classified by index
indotn, and on the right indnto

Figure 17: Result layer attributes table for the 1:2 variant with an additional column
with the difference in population

94 F. Berezowski, J. Bylina

References
[1] Westra Erik, Python Geospatial Development, Packt Publishing Ltd, 2016.

[2] Marian Kallas, Województwo w Drugiej Rzeczpospolitej (z dziejów podziałów
terytorialnych w latach (1919–1939). Acta Universitatis Nicolai Copernici. His-
toria 30 (322), p. 145–161, 1997.

[3] Dz.U. z 1937, nr 46, poz. 350.

[4] Dz.U. z 1998 nr 96 poz. 603

[5] Dz.U. z 1998 nr 103 poz. 652

[6] Statistical Yearbook of the Republic of Poland, Warsaw 2019, p. 68.

Some Computational Aspects of
Graph-Based Cryptography

Michał Klisowski∗

1 Introduction

Modern cryptography tools [6] try to provide security, including data confi-
dentiality and integrity or the ability to verify the source of the information. The
traditional tool for data confidentiality is called symmetric-key cryptography. In
symmetric-key cryptography, both parties must have a common secret key that
allows both encryption and decryption. A more modern solution is public-key cryp-
tography. The receiver can publish information (public key) to enable everyone
to encrypt information. However, to decrypt the message a secret private key is
needed.

Asymmetric cryptosystems commonly used today are based on the hardness of
just a few computational problems (integer factorization, the discrete logarithm
problem). There exist quantum algorithms that can solve these problems once a
sufficiently powerful quantum computer is built [21, 20, 31].

Post-quantum cryptography [1] is cryptography based on problems resistant to
quantum attacks.

The branch of post-quantum cryptography based on the hardness of the problem
of finding a solution of a system of quadratic equations with multiple variables over
the finite field F2 is called multivariate cryptography [3]. Algorithms described in
this work are closely related to multivariate cryptography but differ from classic
multivariate cryptosystems in that they use a variety of commutative rings (not
only F2), and use not only quadratic polynomial maps, but also maps of greater
degrees.

This paper discusses some computational aspects of multivariate cryptography
algorithms based on two families of algebraic graphs, namely D(n,K) and A(n,K).

The first studies on the described families were conducted by Ustimenko, Lazeb-
nik and Woldar [14, 15, 16, 17, 13]. These works studied the D(n,K) graph families.
They turned out to be the source of cryptographic algorithms and error correction
codes [5, 7, 19]. We describe these families of graphs in Section 2.

A symmetric cryptosystem based on these families of graphs was first proposed
in [26]. In papers [27] and [28] an asymmetric encryption scheme was presented,
in which the public key consisted of polynomials of many variables constructed

∗Corresponding author — mklisow@hektor.umcs.lublin.pl

95

96 M. Klisowski

using polynomial equations describing the above-mentioned families of graphs. A
graph-based symmetric key scheme is presented in Section 3.

Section 4 describes the basic variant of the asymmetric cryptosystem and
presents some useful implementation techniques. It also presents cryptanalysis of
the basic variant and informs about its modification options and safer graph-based
cryptosystem families.

The paper ends with the conclusion.

2 Algebraic graphs over finite commutative rings

In this section, we describe the mathematical foundations of the algorithms
described in the following subsections. These are finite commutative rings and
algebraically defined families of graphs over these rings. We discuss some of their
mathematical properties as well as some aspects of their software implementation.

2.1 Finite commutative rings

We describe commutative finite rings used in the implementation of presented
cryptosystems and discuss some aspects of their software representation and arith-
metic implementation. The chosen rings are: the ring of integers modulo p (Zp),
finite fields (Fq — q is the number of elements of the field), and Boolean rings (Bn

— Boolean ring with 2n elements).

2.1.1 Ring of integers modulo p

The ring of integers modulo p represents modular arithmetic. It is a set of all
congruence classes for a modulus p. The modulus is usually known from the context
so we will denote the elements of the ring as the smallest non-negative elements of
the class. E.g. for the ring of integers modulo 3, the ring would be written simply
as Z3 = {0, 1, 2}. The implementation of arithmetic in this ring is simple: most
programming languages provide the modulus operator that yields the remainder of
an integer division, e.g. % operator in C and C++. The ring of integers modulo 2n

is a special, even easier case. All integer arithmetic in the processor is performed
modulo 2n where n is the number of bits of the integer.

2.1.2 Finite fields

The field is a commutative ring in which the neutral element of the addition is
different from the neutral element of multiplication and every non-zero element is
invertible (have multiplicative inverse).

The finite field (Fp) is a field that contains a finite number of elements (p). It
is called a prime field if p is a prime number. The field Fp is then identical to the
ring Zp.

Let Fp be the prime field and m ∈ Fp[u] be an irreducible polynomial of the
variable u over the Fp of degree n. By Fp[u]/(m) we denote the set of classes of
residuals of polynomials from Fp[u] modulo m. This set, along with the operation
of adding polynomials and the operation of multiplying them modulo polynomial

Some Computational Aspects of Graph-Based Cryptography 97

m, creates a field of size pn. This field is called an extension field of field Fp of
degree n. Every finite field is a prime field or an extension of a prime field of finite
degree.

In the following sections, the elements of Fq will be written as non-negative
integers less than q. For a prime field, the notation will be the same as for the ring
Zq. For extension fields, we will write the polynomial (field element) as an integer,
the digits of which in base p are the successive coefficients of the polynomial in the
order from the highest power. E.g for the field F34 the polynomial 2u3 + u will be
written as 20103 = 57.

The prime field arithmetic is modular arithmetic. Extension field arithmetic is
polynomial modular arithmetic. To compute the inverse, we can use the fact that
xq−1 = 1 (so x · xq−2 = 1 and x−1 = xq−2) for every x ∈ Fq, x 6= 0 (see [18]) and
use the fast exponentiation algorithm.

For fields of a size such that we can afford to store the array of field elements of
size O (q) in memory, we can speed up the multiplication and division by using the
fact that there exists the field element g such that we can represent each non-zero
element x as x = gk for some non-negative integer k < q − 1. The number k is
called the discrete logarithm of x with base g.

We can precompute every pair (x, k), where k = logg(x), and store it in a way
that allows one to quickly search for both x and k (e.g two arrays — one indexed
with x and one with k).

For the fast multiplication one can use:

ab = glogg(ab) = glogg(a)+logg(b),

and for the division:

a/b = glogg(a/b) = glogg(a)−logg(b).

2.1.3 Boolean rings

A Boolean ring is a ring where x2 = x for every x. We can represent the Boolean
ring with 2n elements as a sequence of n bits. The addition in the ring can be
implemented as a bitwise XOR operation (ˆ in C and C++) and the multiplication
as a bitwise AND (& in C and C++).

2.2 D(n,K) and A(n,K) graph families
Algebraic graph theory [2] is a branch of graph theory in which algebraic methods

are used to define graphs and derive their properties.
Let B = K[x1, . . . , xn] be the ring of polynomials of n variables over the com-

mutative ring K. An algebraic set is the set of solutions of a system of polynomial
equations over K i.e. it is a subset P of Kn such that there exists the set of
polynomials F , F ⊂ B such that

P = {x ∈ Kn : f(x) = 0, for every f ∈ F} .
An algebraic graph is a graph in which the set of vertices and the set of neighbors

of each vertex is an algebraic set. D(n,K) and A(n,K) graph families are examples
of algebraic graphs.

98 M. Klisowski

First, let us define the D(n,K) graph family (introduced in [15] and [17]). Let
P and L be two copies of the set of n-tuples of elements of K. The D(n,K) graph
is bipartite (its vertex set consists of two disjoint sets; there is no edge between two
vertices of the same part) and the sets P and L are the two parts of it. We denote
the elements of the set P by (p), the elements of the set L by [l], and we will write
their coordinates as follows:

(p) = (p0, p1, p2, . . . , pn−1, pn)

[l] = [l0, l1, l2, . . . , ln−1, ln].

There is an edge in the graph between (p) and [l] if the following equations are
true:

l1 − p1 = l0p0

l2 − p2 = l1p0

and for i > 2:
li − pi = l0pi−2, for i ≡ 0 ∨ i ≡ 3 (mod 4)

li − pi = li−2p0, for i ≡ 1 ∨ i ≡ 2 (mod 4).

(1)

The A(n,K) graph family was introduced in [23]. Its definition is similar to the
definition of D(n,K) but the equations differ:

li − pi = l0pi−1, for i ≡ 1 (mod 2),
li − pi = li−1p0, for i ≡ 0 (mod 2).

(2)

Each vertex v of the described graphs has an assigned color. We denote it with
color(v). The color of the vertex is its first coordinate (an element of K). Each
vertex has exactly one neighbor with the color k for any k ∈ K. It results from the
equations defining the graph.

We define an operator Nt(v) as a function returning the neighbor of the vertex
v with the color color(v) + t. This operator is an essential part of the graph-based
algorithm described later.

2.2.1 Software representation of algebraic graphs

The order (number of vertices) of the graphs from D(n,K) and A(n,K) families
is 2|K|n and their size (number of edges) is |K|n+1. This means that we cannot
use standard techniques for representing graphs in computer memory (adjacency
list, adjacency matrix, or incidence matrix).

During the operation of the algorithms described in the following subsections,
we usually need only two adjacent graph vertices in memory at a time. While we
know the coordinates of one of them, the coordinates of the other are calculated
from the first one with the Nt operator. Therefore, we do not store edge information
in memory at all.

Algorithms describing the Nt operator for D(n,K) and A(n,K) graph families
are presented as Algorithm 2.1 and Algorithm 2.2 respectively.

Some Computational Aspects of Graph-Based Cryptography 99

Algorithm 2.1 Nt operator — D(n,K) graph family

Input: t ∈ K, v — vertex,
Output: u = Nt(v)
1: u0 := v0 + t
2: if v ∈ P then
3: u1 := v1 + u0 · v0
4: u2 := v2 + u1 · v0
5: r := 2 {r ≡ i− 1 (mod 4) in the first iteration}
6: for i = 3, 4, . . . , n− 1 do
7: if r < 2 {i ≡ 1 ∨ i ≡ 2 (mod 4)} then
8: ui := vi + v0 · ui−2
9: else {i ≡ 0 ∨ i ≡ 3 (mod 4)}

10: ui := vi + vi−2 · u0
11: if r = 3 then
12: r := 0
13: else
14: r := r + 1
15: else {v ∈ L}
16: u1 := v1 − u0 · v0
17: u2 := v2 − u0 · v1
18: r := 2 {r ≡ i− 1 (mod 4) in the first iteration}
19: for i = 3, 4, . . . , n− 1 do
20: if r < 2 {i ≡ 1 ∨ i ≡ 2 (mod 4)} then
21: ui := vi − vi−2 · u0
22: else {i ≡ 0 ∨ i ≡ 3 (mod 4)}
23: ui := vi − v0 · ui−2
24: if r = 3 then
25: r := 0
26: else
27: r := r + 1

3 Symmetric graph-based encryption scheme
Ustimenko suggested in [26] that the properties of the families of graphs of

large girth can make them good candidates for a cryptographic tool. He proposed
a simple symmetric-key cipher. The described scheme was called a “stream cipher”
because it could be used to encrypt messages of any length regardless of key length,
however, its mode of operation was completely different from the classic stream
ciphers based on the pseudorandom number generator and the XOR operation.

Some aspects of the implementation of that early scheme were described in [22,
29, 25].

In this work we focus on asymmetric schemes and the symmetric cryptosystem
presented here is not secure at all, but the algorithms of asymmetric schemes are
derived from the symmetric ones. Therefore, it is important to describe them in
detail.

100 M. Klisowski

Algorithm 2.2 Nt operator — A(n,K) graph family)

Input: t ∈ K, v — vertex,
Output: u = Nt(v)
1: u0 := v0 + t
2: if v ∈ P then
3: r := 1 {r ≡ i mod 2 in the first iteration}
4: for i = 1, . . . , n− 1 do
5: if r = 0 then
6: ui := vi + v0 · ui−1
7: else {r = 1}
8: ui := vi + vi−1 · u0
9: r := 1− r

10: else {v ∈ L}
11: r := 1 {r ≡ i mod 2 in the first iteration}
12: for i = 1, . . . , n− 1 do
13: if r = 0 then
14: ui := vi − vi−1 · u0
15: else {r = 1}
16: ui := vi − v0 · ui−1
17: r := 1− r

The idea behind graph-based encryption algorithms used in the cryptosystem
described below is to use the graph vertices (n-tuples over commutative ring K)
as plaintexts and ciphertexts and the graph edges as the steps of the encryption
algorithm. After starting from the vertex representing the plaintext and following a
certain path (depending on the encryption key), the encryption algorithm reaches
the vertex representing the ciphertext. Decryption takes the same path in oppo-
site direction. The key in this scheme is also some tuple over the ring K and it
determines the edges of an encryption path.

For the key k = (k1, k2, . . . , ks) the algorithm uses the path:

p = v0 −→ v1 = Nk1
(v0) −→ v2 = Nk2

(v1) −→ · · ·
· · · −→ vs = Nks

(vs−1) = c

(p is the plaintext and c is the ciphertext) and the colors of visited vertices are:

color(p) = x0 −→ x1 = x0 + k1 −→ x2 = x1 + k2 −→ · · ·
· · · −→ xs = xs−1 + ks = color(c)

An Nt operator is a bijection for every t and its inverse function is N−1t = N−t
(the color of the vertex N−t(Nt(v)) is color(v) + t + (−t) = color(v)). Thus, the
decryption procedure is the same as encryption but with different key (decryption
key): k′ = (−ks,−ks−1, . . . ,−k1).

An example of the encryption and decryption procedure for the graph D(7,Z256)
will now be given. Plain text, successive graph vertices, and ciphertext will be
shown as column vectors. All addition, subtraction, and multiplication operations
are corresponding operations on the ring Z256 (the results are residues modulo 256).

Some Computational Aspects of Graph-Based Cryptography 101

Let (54, 69, 244, 167) be an example password. The encryption steps are shown
below (m is the plaintext and c the ciphertext):

m =

11
138
225
126
236
18
165

−→

65 = 11 + 54
85 = 138 + 65 · 11
136 = 225 + 85 · 11
136 = 126 + 65 · 138
13 = 236 + 65 · 225
234 = 18 + 136 · 11
52 = 165 + 13 · 11

−→

134 = 65 + 69
79 = 85− 65 · 134
10 = 136− 85 · 134
121 = 136− 65 · 79
131 = 13− 65 · 10
186 = 234− 136 · 134
102 = 52− 13 · 134

−→

−→

122 = 134 + 244
43 = 79 + 122 · 134
140 = 10 + 43 · 134
31 = 121 + 122 · 79
71 = 131 + 122 · 10
244 = 186 + 31 · 134
144 = 102 + 71 · 134

−→

33 = 122 + 167
113 = 43− 122 · 33
1 = 140− 43 · 33
69 = 31− 122 · 113
205 = 71− 122 · 1
245 = 244− 31 · 33
105 = 144− 71 · 33

= c

Below, it is shown how to recover the plaintext from the ciphertext calculated
above. The decryption key will be (−167,−244,−69,−54) = (89, 12, 187, 202).

c =

33
113
1
69
205
245
105

−→

122 = 33 + 89
43 = 113 + 122 · 33
140 = 1 + 43 · 33
31 = 69 + 122 · 113
71 = 205 + 122 · 1
244 = 245 + 31 · 33
144 = 105 + 71 · 33

−→

134 = 122 + 12
79 = 43− 122 · 134
10 = 140− 43 · 134
121 = 31− 122 · 79
131 = 71− 122 · 10
186 = 244− 31 · 134
102 = 144− 71 · 134

−→

−→

65 = 134 + 187
85 = 79 + 65 · 134
136 = 10 + 85 · 134
136 = 121 + 65 · 79
13 = 131 + 65 · 10
234 = 186 + 136 · 134
52 = 102 + 13 · 134

−→

11 = 65 + 202
138 = 85− 65 · 11
225 = 136− 85 · 11
126 = 136− 65 · 138
236 = 13− 65 · 225
18 = 234− 136 · 11
165 = 52− 13 · 11

= m.

4 Asymmetric graph-based encryption schemes

The idea of using the presented graph families to construct public-key cryp-
tosystems was presented in [27] and [28]. Various aspects of its implementation are
presented in papers [10], [9], [11] and [12].

102 M. Klisowski

To describe the relationship between the ciphertext c = (c1, c2, . . . , cn), and the
plaintext p = (p1, p2, . . . , pn), we use a polynomial transformation:

c1 = f1(p1, p2, . . . , pn)

c2 = f2(p1, p2, . . . , pn)
...
cn = fn(p1, p2, . . . , pn)

(3)

The polynomial transformation E, where E(p) = (f1(p), f2(p), . . . , fn(p)) is a
public key. Encryption is done by computing the values of the polynomials f1,
f2, . . . , fn. The private (decryption) key is of the same form as in the symmetric
cryptosystem (tuple of ring elements determining the color of successive vertices
on the decryption path).

The branch of cryptography dealing with cryptosystems in which the public key
is a polynomial transformation of multiple variables is called multivariate cryptog-
raphy [3]. Our cryptosystem differs from the classic multivariate cryptosystems in
that we also consider transformations of degree greater than 2 and commutative
rings other than F2.

4.1 Basic asymmetric schemes and their algebraic cryptanal-
ysis

Note that the Nt described in the 3 section jest is a polynomial transformation
Kn → Kn (n is the plaintext and ciphertext length). It means that the transfor-
mation Fk (where k = (k1, k2, . . . , ks)) representing the walk in the graph, defined
as

Fk = Nps
◦ . . . ◦Nk2

◦Nk1
(4)

is also a polynomial transformation as a composition of polynomial transformations.
It was proved in [30] that the polynomial transformation Fk, resulting from the

composition of Nki
operators for the D(n,K) graph family has a degree not greater

than 3. The proof was extended in [24] to the A(n,K) graph family.
An example of such a polynomial transformation will now be given. We will use

D(5,F72) as an example graph. The ring F72 elements will be written as integers in
the range [0, 27 − 1] as described in the 2.1 subsection, (the irreducible polynomial
w(u) = u2 + 6u + 3 is used). The following examples use α = (28, 20, 19, 28) as
the password. The relationship between the plaintext x = (x1, x2, x3, x4, x5), and
the ciphertext y = (y1, y2, y3, y4, y5) can then be written as equations:

y1 = x1 + 39,

y2 = 17x1 + x2 + 7,

y3 = 17x21 + 7x1 + 17x2 + x3 + 3,

y4 = 39x21 + 35x1 + x4 + 34,

y5 = 39x31 + 35x21 + 39x1x2 + 31x1 + 42x2 + x5 + 30.

(5)

Some Computational Aspects of Graph-Based Cryptography 103

By encrypting the plaintext x = (2, 34, 47, 15, 0) using the equation (5), we
get

y =

2 + 39
17 · 2 + 34 + 7
17 · 22 + 7 · 2 + 17 · 34 + 47 + 3
39 · 22 + 35 · 2 + 15 + 34
39 · 23 + 35 · 22 + 39 · 2 · 34 + 31 · 2 + 42 · 34 + 0 + 30

 =

41
19
42
9
36

 .
By decrypting with the password (−28, −19, −20, −28) = (21, 37, 36, 21), we

get

y =

41
19
42
9
36

 −→

13 = 41 + 21
12 = 19 + 13 · 41
1 = 42 + 12 · 41
47 = 9 + 13 · 19
39 = 36 + 13 · 42

 −→

43 = 13 + 37
3 = 12− 13 · 43
35 = 1− 12 · 43
22 = 47− 13 · 3
40 = 39− 13 · 35

 −→

−→

30 = 43 + 36
38 = 3 + 30 · 43
18 = 35 + 38 · 43
7 = 22 + 30 · 3
1 = 40 + 30 · 35

 −→

2 = 30 + 21
34 = 38− 30 · 2
47 = 18− 38 · 2
15 = 7− 30 · 34
0 = 1− 30 · 47

 = x.

It can be proved from equations 1 and 2 that the equation y = Fk(x), where
Fk is in the form (4), y = (y1, . . . , yn), x = (x1, . . . , xn), can be written as

y1 = f1 + x1

y2 = f2(x1) + x2
...
yi = fi(x1, x2, . . . , xi−1) + xi
...
yn = fn(x1, x2, . . . , xn−1) + xn

(6)

where fi is for 2 ≤ i ≤ n a polynomial of i− 1 variables, and f1 is a constant.
This means that such a transformation cannot be directly used as a public key

in our cryptosystem. It is possible, having the given ciphertext c and the publicly
available fi polynomials to easily calculate the successive elements of the plaintext
p as pi = ci − fi(p1, . . . , pi−1).

Multivariate cryptography uses two invertible affine transformations to hide
such polynomial map with a clear, visible structure.

The resulting transformation is therefore of the form:

E(T1,k,T2) = T2 ◦ Fk ◦ T1 (7)

where k is the key, and T1 and T2 are invertible affine transformations.
The polynomial map E(T1,k,T2) has degree 3 (the composition of Fk of degree 3

with T1 i T2 of degree 1). The private key (used for decryption) is a triple (T1, k,
T2).

104 M. Klisowski

The following example shows a polynomial map resulting from composing affine
transformations with a graph-based polynomial map. The graph and password used
are the same as in the example above. The affine transformations used are:

T1

x1
x2
x3
x4
x5

 =

14 37 29 1 2
45 3 15 20 48
25 17 24 27 12
8 13 14 20 5
34 16 46 14 24

×

x1
x2
x3
x4
x5

+

17
21
44
3
17

 ,

T2

x1
x2
x3
x4
x5

 =

24 5 32 2 33
38 47 45 19 30
47 26 18 25 3
26 42 47 19 22
27 43 28 23 18

×

x1
x2
x3
x4
x5

+

43
39
31
25
1

 .
The resulting transformation is shown below.

y1 = 45x31 + 5x21x2 + 25x21x3 + 14x21x4 + 28x21x5 + 27x1x
2
2 + 24x1x2x3 + 25x1x2x4

+ 43x1x2x5 + 23x1x
2
3 + 9x1x3x4 + 18x1x3x5 + x1x

2
4 + 4x1x4x5 + 4x1x

2
5 + 23x32

+ 39x22x3 + 48x22x4 + 40x22x5 + 11x2x
2
3 + 23x2x3x4 + 46x2x3x5 + 18x2x

2
4

+ 9x2x4x5 + 9x2x
2
5 + 35x33 + 17x23x4 + 34x23x5 + 8x3x

2
4 + 32x3x4x5 + 32x3x

2
5

+ 37x34 + 19x24x5 + 31x4x
2
5 + 37x35 + 20x21 + 47x1x2 + 31x1x3 + 6x1x4 + 24x1x5

+ 31x22 + 32x2x3 + x2x4 + 4x2x5 + 35x23 + 16x3x4 + 7x3x5 + 28x24 + 35x25 + x1

+ 16x2 + 36x3 + 16x4 + 15x5 + 4

y2 = 5x31 + 18x21x2 + 8x21x3 + 13x21x4 + 19x21x5 + 46x1x
2
2 + 17x1x2x3 + 8x1x2x4

+ 16x1x2x5 + 26x1x
2
3 + 20x1x3x4 + 33x1x3x5 + 47x1x

2
4 + 27x1x4x5 + 27x1x

2
5

+ 26x32 + 14x22x3 + 34x22x4 + 12x22x5 + 2x2x
2
3 + 26x2x3x4 + 45x2x3x5 + 33x2x

2
4

+ 20x2x4x5 + 20x2x
2
5 + 43x33 + 35x23x4 + 21x23x5 + 22x3x

2
4 + 39x3x4x5 + 39x3x

2
5

+ 32x34 + 24x24x5 + 48x4x
2
5 + 32x35 + 26x21 + 39x22 + 41x2x4 + 8x2x5 + 40x23

+ 14x24 + 35x1x2 + 29x1x3 + 16x1x4 + 31x1x5 + 31x2x3 + 13x3x4 + 11x3x5

+ x4x5 + 44x25 + 21x1 + 7x2 + 23x3 + 30x4 + 38x5 + 10

y3 = 47x31 + 36x21x2 + 17x21x3 + 8x21x4 + 16x21x5 + 30x1x
2
2 + 7x1x2x3 + 17x1x2x4

+ 34x1x2x5 + 4x1x
2
3 + 45x1x3x4 + 41x1x3x5 + 10x1x

2
4 + 33x1x4x5 + 33x1x

2
5

+ 4x32 + 25x22x3 + 14x22x4 + 28x22x5 + 9x2x
2
3 + 4x2x3x4 + x2x3x5 + 41x2x

2
4

+ 45x2x4x5 + 45x2x
2
5 + 48x33 + 31x23x4 + 13x23x5 + 35x3x

2
4 + 42x3x4x5 + 42x3x

2
5

+ 12x34 + 44x24x5 + 39x4x
2
5 + 12x35 + 19x21 + 31x22 + 39x2x4 + 35x2x5 + 9x23

+ 22x24 + 29x1x2 + 48x1x3 + 48x1x4 + 11x1x5 + 16x2x3 + 37x3x4 + 8x3x5

+ 31x4x5 + 23x25 + 34x1 + 13x2 + 44x3 + 31x4 + 30x5 + 25

Some Computational Aspects of Graph-Based Cryptography 105

y4 = 42x31 + 25x21x2 + 9x21x3 + 2x21x4 + 4x21x5 + 40x1x
2
2 + 46x1x2x3 + 9x1x2x4

+ 18x1x2x5 + 34x1x
2
3 + 32x1x3x4 + 8x1x3x5 + 19x1x

2
4 + 13x1x4x5 + 13x1x

2
5

+ 34x32 + 11x22x3 + 36x22x4 + 23x22x5 + 7x2x
2
3 + 34x2x3x4 + 12x2x3x5 + 8x2x

2
4

+ 32x2x4x5 + 32x2x
2
5 + 45x23x4 + 5x33 + 41x23x5 + 20x3x

2
4 + 10x3x4x5 + 10x3x

2
5

+ 29x34 + 27x24x5 + 47x4x
2
5 + 29x35 + 39x21 + 24x1x2 + 47x1x3 + 37x1x4 + 46x1x5

+ 47x22 + 10x2x3 + 19x2x4 + 13x2x5 + 5x23 + 33x3x4 + x3x5 + 4x24 + 5x25 + 13x1

+ 37x2 + 2x3 + 14x4 + 24x5 + 32

y5 = 46x31 + 45x21x2 + 42x21x3 + 39x21x4 + 22x21x5 + 4x1x
2
2 + 19x1x2x3 + 42x1x2x4

+ 35x1x2x5 + 38x1x
2
3 + 6x1x3x4 + 5x1x3x5 + 30x1x

2
4 + 15x1x4x5 + 15x1x

2
5 + 38x32

+ 32x22x3 + 31x22x4 + 13x22x5 + 10x2x
2
3 + 38x2x3x4 + 27x2x3x5 + 5x2x

2
4 + 6x2x4x5

+ 6x2x
2
5 + 17x33 + 24x23x4 + 48x23x5 + 25x3x

2
4 + 37x3x4x5 + 37x3x

2
5 + 21x34 + 28x24x5

+ 7x4x
2
5 + 21x35 + 29x21 + 34x1x2 + 29x1x3 + 10x1x4 + 36x1x5 + 33x22 + 30x2x3

+ 20x2x4 + 37x2x5 + 20x23 + 5x3x4 + 10x3x5 + 19x24 + 23x4x5 + 40x25 + 46x1

+ 20x2 + 3x3 + 34x4 + 21x5 + 35

4.1.1 Public key generation

The most interesting and also time-consuming algorithm of the public key cryp-
tosystem is the public key generation algorithm. It consists of two important steps:

• generating two invertible affine transformations over the given rings,

• generating the public polynomial map with symbolic computation.

Some efficient algorithms (O
(
n3
)
) for generating invertible affine transforma-

tions (it comes down to generating invertible matrices) over selected commutative
rings are described in [8].

The algorithm for generating a polynomial map is the most important part of
the public key generation. It can be done with an Nt operator (Algorithms 2.1 and
2.2). The main difference between this algorithm and the symmetric-key encryption
algorithm is that during the symmetric encryption we perform calculations on the
elements of the ring, and while we generate the public key, we perform symbolic
computations — calculations on polynomials over a given ring.

In the graph D(2,Z7) for the password (5, 4), the encryption of the (2, 3) plain-
text would go like this:[

2
3

]
−→

[
4 = 2 + 2
4 = 3 + 2 · 4

]
−→

[
1 = 4 + 4
0 = 4− 4 · 1

]
.

Generating a polynomial transform would look like this:

[
x1
x2

]
−→

[
x1 + 2
x2 + x1(x1 + 2) = x21 + 2x1 + x2

]
−→

−→
[
x1 + 2 + 4 = x1 + 6
(x21 + 2x1 + x2)− (x1 + 2)(x1 + 6) = x1 + x2 + 2

]
.

106 M. Klisowski

For simplicity, we have omitted affine transformations in the above examples.
A key part of these computations is the multiplication of polynomials. We tested

various libraries for polynomial computations over commutative rings (e.g. Victor
Shoup’s NTL library) and various computer algebra systems for this, but the com-
putation time was not satisfactory. The main problem with existing software was its
generality. Although there exist fast implementations of multiplication algorithms,
they all do full multiplication. In our case, because we know that the full result is
of degree not bigger than 3, we don’t have to compute coefficients of monomials
with the bigger degree. Therefore, we implemented the library for performing the
arithmetic operations on polynomials of degree bounded by 3. It gives us the mul-
tiplication algorithm linear with respect to the number of coefficients (but cubical
with respect to n — the number of plaintext and ciphertext elements).

After generating a graph-based polynomial map we must compose it with affine
transformation. The composition also must be done symbolically.

It was shown in [8] that the complexity of the public key generation is O
(
mn4

)
where m is the length of the key and n is the length of the plaintext and ciphertext.

Figure 1 shows sample generation times for various rings and graphs. The com-
putations were performed on a computer with AMD Athlon II X2 245, 2.9 GHz
CPU.

(a) D(n,K) graph family (b) A(n,K) graph family

Figure 1: Generation time of public polynomial map for fixed key length (64) (K =
B32,Z232 ,F232)

4.1.2 Cryptanalysis

The asymmetric cryptosystem presented in this chapter turned out to be quite
easy to break regardless of the affine transformations used. However, public-key al-
gorithms described in this section are still useful in algebraic graph theory research
and are building blocks of some newer cryptographic schemes.

Some Computational Aspects of Graph-Based Cryptography 107

Even though having a given public key in the form of a polynomial map:

E(x1, x2, . . . , xn) =

(f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn))

we cannot find private key in the form of the tuple of ring elements and two affine
transformation, we can find its polynomial form E−1, i.e. find the transformation

E−1(x1, x2, . . . , xn) =

(g1(x1, x2, . . . , xn), g2(x1, x2, . . . , xn), . . . , gn(x1, x2, . . . , xn)),

such that
E−1(E(x)) = x,

i.e.

gi(f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn)) = xi,

dla 1 ≤ i ≤ n.

This is because the decryption transformation in our cryptosystem is a trans-
formation of the same type as the encryption transformation, i.e. its degree is also
3.

We can write the polynomial form of the transformation E−1 as n polynomials:

ys =
∑

i≤j≤k
1≤i,j,k≤n

a
(s)
ijkxixjxk +

∑
i≤j

1≤i,j≤n

a
(s)
ij xixj +

∑
1≤i≤n

a
(s)
i xi + a(s),

dla 1 ≤ s ≤ n.
(8)

Each of them has n monomials (see [8]).
Thus, in order to find the polynomial form, we need to find nr =

n(n+1)(n+2)(n+3)
6 coefficients of these polynomials.

Using r random plaintexts (denoted by x(1), . . . , x(r)) and encrypting them
with a public transformation we get r pairs (x(i), y(i)), where y(i) is a ciphertext
corresponding to the plaintext x(i). If we now substitute the coordinates of the
obtained pairs into the equation (8) for the selected s, we will obtain r linear equa-
tions with r unknowns. Such a system of equations is easy to solve and by solving
it, we obtain the coefficients of the component s of the decrypting transformation.

The same plaintext pairs and ciphertext pairs can be used to obtain the coeffi-
cients of each of the n polynomials that make up the decryption transform. So it
is enough to generate r of them to find the entire decryption key.

Eventually finding the decryption transform is to solve the following linear
equation:

XA = Y, (9)
czyli

A = X−1Y (10)
The unknown in this equation is A — the matrix of the decrypting trans-

formation coefficients. Matrices X and Y are matrices constructed from random
plaintexts and their corresponding ciphertexts.

108 M. Klisowski

4.1.3 Modified public-key cryptosystems

The given cryptanalysis motivated the invention of two new families of cryp-
tosystems with a public key based on the D(n,K) and A(n,K) graphs. They are
described in detail in [8].

One of them is based on small-degree permutation polynomials of one degree
whose inverse permutation has a very high degree. Such polynomials make it pos-
sible to construct a small-degree polynomial encrypting transformation that has a
corresponding decrypting transformation with an arbitrarily high degree.

Another one uses the fact that the encryption map and its composition with
itself form the cyclic group. This enables the use of a modified classic ElGamal
cryptosystem [4].

5 Conclusion
In this paper, we presented some computational aspects of cryptography based

on algebraic graphs. We proposed some algorithms and implementation techniques
for these cryptosystems.

The presented techniques enable the efficient implementation of the presented
cryptosystems. The presented algorithms can help in further research in graph
theory and in constructing new, faster and safer cryptosystems.

A good direction for further research on the described algorithms would be
their improvement with the use of HPC (high-performance computing) techniques.
The arithmetic of dense polynomials (especially addition and more time-consuming
multiplication) involves a lot of array processing that can be vectorized. Generating
public keys involves a lot of polynomial composition, which in turn involves a lot
of polynomial multiplications that could be done in parallel.

References
[1] D. J. Bernstein, J. Buchmann, and E. Dahmen. Post-Quantum Cryptography.

Springer, 2009.

[2] N. Biggs. Algebraic Graph Theory. Cambridge University Press, drugie edition,
1993.

[3] J. Ding, J. E. Gower, and D. S. Schmidt. Multivariate Public Key Cryptosys-
tems. Advances in Information Security. Springer, 2006.

[4] T. ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

[5] L. J. Guinand P. Tanner type codes arising from large girth graphs. In
Canadian Workshop on Information Theory CWIT ’97, 1997.

[6] J. Katz and Y. Lindell. Introduction to Modern Cryptography: Third Edi-
tion. Chapman & Hall/CRC Cryptography and Network Security Series. CRC
Press/Taylor & Francis Group, 2020.

Some Computational Aspects of Graph-Based Cryptography 109

[7] J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland. Explicit con-
struction of families of ldpc codes with no 4-cycles. IEEE Transactions on
Information Theory, 50(10):2378–2388, 2004.

[8] M. Klisowski. Zwiększenie bezpieczeństwa kryptograficznych algorytmów wielu
zmiennych opartych na algebraicznej teorii grafów. PhD thesis, Politechnika
Częstochowska, 2015.

[9] M. Klisowski, U. Romańczuk, and V. Ustimenko. The implementation of
cubic public keys based on a new family of algebraic graphs. Annales UMCS,
Informatica, 11(2):127–141, 2011.

[10] M. Klisowski and V. Ustimenko. On the implementation of public keys algo-
rithms based on algebraic graphs over finite commutative rings. In IMCSIT,
pages 303–308, 2010.

[11] M. Klisowski and V. Ustimenko. On the implementation of cubic public keys
based on algebraic graphs over the finite commutative rings and their symme-
tries. Albanian Journal of Mathematics, 5(3), 2011.

[12] M. Klisowski and V. Ustimenko. On the comparison of cryptographical proper-
ties of two different families of graphs with large cycle indicator. Mathematics
in Computer Science, 6(2):181–198, 2012.

[13] F. Lazebnik, V. Ustimenko, and A. Woldar. A characterization of the compo-
nents of the graphs D(k,q). Discrete Mathematics, 157(1–3):271–283, 1996.

[14] F. Lazebnik and V. A. Ustimenko. New examples of graphs without small
cycles and of large size. Eur. J. Comb., 14(5):445–460, Sept. 1993.

[15] F. Lazebnik and V. A. Ustimenko. Some algebraic constructions of dense
graphs of large girth and of large size. DIMACS Series Discrete Math. Theoret.
Comput. Sci., 10:75–93, 1993.

[16] F. Lazebnik and V. A. Ustimenko. Explicit construction of graphs with an
arbitrary large girth and of large size. Discrete Applied Mathematics, 60(1-
3):275–284, 1995.

[17] F. Lazebnik, V. A. Ustimenko, and A. J. Woldar. A new series of dense graphs
of high girth. Bull. Amer. Math. SIC., 32:73–79, 1995.

[18] R. Lidl and H. Niederreiter. Finite Fields. Number 20 in Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1997.

[19] M. Polak and V. Ustimenko. Ldpc codes based on algebraic graphs. Annales
Universitatis Mariae Curie-Skłodowska. Sectio A1. Informatica, 12, 01 2012.

[20] J. Proos and C. Zalka. Shor’s discrete logarithm quantum algorithm for elliptic
curves. Quantum Information & Computation, 3(4):317–344, 2003.

[21] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, Oct.
1997.

110 M. Klisowski

[22] V. Ustimenko. Cryptim: Graphs as tools for symmetric encryption. In S. Boz-
taş and I. E. Shparlinski, editors, Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, volume 2227 of Lecture Notes in Computer Science,
pages 278–286. Springer Berlin Heidelberg, 2001.

[23] V. Ustimenko. On linguistic dynamical systems, families of graphs of large
girth, and cryptography. Journal of Mathematical Sciences, 140(3):461–471,
2007.

[24] V. Ustimenko and U. Romańczuk. On extremal graph theory, explicit alge-
braic constructions of extremal graphs and corresponding turing encryption
machines. In Artificial Intelligence, Evolutionary Computing and Metaheuris-
tics, pages 257–285. Springer, 2013.

[25] V. Ustimenko and A. Touzene. Cryptall: System to encrypt all types of data.
Notices of Kiev Mohyla Academy, 2004.

[26] V. A. Ustimenko. Coordinatization of regular tree and its quotients. In P. En-
gel and H. Syta, editors, Voronoï’s Impact on Modern Science, number 2 in
Proceedings of the institute of mathematics of the national academy of sci-
ences of Ukraine. Institute of Mathematics, National Academy of Sciences of
Ukraine, 1998.

[27] V. A. Ustimenko. Graphs with special arcs and cryptography. Acta Applican-
dae Mathematicae, 74, 2002.

[28] V. A. Ustimenko. Maximality of affine group, and hidden graph cryptosystems.
Algebra Discrete Math., 2005(1):133–150, 2005.

[29] V. A. Ustimenko and Y. M. Khmelevsky. Walks on graphs as symmetric or
asymmetric tools to encrypt data. The South Pacific Journal of Natural and
Applied Sciences, 2002.

[30] A. Wróblewska. On some properties of graph based public keys. Albanian
Journal of Mathematics, 2(3), 2008.

[31] S. Y. Yan. Quantum Attacks on Public-Key Cryptosystems. Springer, 2012.

DNA Based Cryptographic Key
Storage System With a Simple and
Automated Method of Primers
Selection

Marek Miśkiewicz∗

Adam Kuzdraliński
Damian Rusinek
Bogdan Księżopolski

1 Introduction

Nowadays, a vast amount of information and data requires protection against
unauthorized access by third parties. Modern cryptographic techniques closely re-
late to the physical representation of data and their effectiveness, often based on
limited computing power. Encryption is the basics but effective methods of data
protection. All encryption algorithms require cryptographic keys. In addition, there
are many secret systems where any access to resources requires password authenti-
cation. The security of data and systems in this case depends largely on how strong
cryptographic keys are (strength of cryptographic keys strongly depends on their
length) and how securely they are stored. Of course, it would be the best if one did
not store the cryptographic keys at all, which would guarantee the highest level of
security. Unfortunately, in most cases (e.g., 4096-bit RSA keys), it is not possible
for the user to remember the strong password or the large key in the correct way.

Most users usually store secret keys in hard drives placed in computer devices
with access secured with a simpler several-character password or on a portable flash
drive. Such solutions have many disadvantages and really do not guarantee a high
level of data security or even in some case’s usability. There are a few important
reasons the cryptographic data is not completely safe, if it is stored on portable
devices (in NAND memory chips) or magnetic storage devices. A user who really
cares about the security of their data cannot be sure that the data storage devices,
produced by third parties, do guarantee proper security. This is because the average
user does not have access to the exact device specification and cannot check if the

∗Corresponding author — marek.miskiewicz@mail.umcs.pl

111

112 M. Miśkiewicz, A. Kuzdraliński, D. Rusinek, B. Księżopolski

electronic systems controlling the memory chips do not allow easy access to data
stored by unauthorized entities. Strong cryptography and ultimate cryptographic
keys security require the assumption of complete distrust in the devices that are
used. The continuous reduction in the size of integrated circuits leads to increased
production costs. This forces the vast majority of chip design companies to trust an
external third party in chip fabrication but outsourcing of chip fabrication opens-up
hardware to attack. Even if the hardware manufacturers do not have bad intentions,
there is always the possibility that third-party interference has occurred (E.g., via
supply chain attacks and dopant-level Trojans. See [1], [2] and [3]).

Access to stored cryptographic keys needs at least computer devices and often
access to wider resources e.g., Internet. With the current complexity of digital
systems, we cannot fully guarantee security, which to some extent relies on trust
in the integrity of digital system manufacturers and designers. Absolute security,
at least theoretically, can only be guaranteed by the lack of participation of third
parties in the process of managing cryptographic keys (creation, storage, use and
destruction), and in particular their storage. If we consider it necessary to use
electronic devices, this entails additional risks (so-called environmental threats), in
particular because of the lack of access to stored data during power system failure
caused, for example, by Solar Storm or High-altitude Electromagnetic Pulse [4].

In the article, we present the new cryptographic keys storage system based on
DNA strands. The proposed method of key storage in terms of its security attempts
to exploit the specific characteristics of DNA itself. The choice of DNA as the carrier
allows to limit the threats connected with strong electromagnetic fields, to which
DNA structures are not sensitive. The specificity of the carrier causes that the
cryptographic keys stored in DNA will exist in a huge number of copies, occupying
at the same time a very small volume, which effectively minimizes the problem
of incorrect reading of the key, at the same time allowing to “hide” the keys on
a molecular scale. In the presented method, it is possible to store encrypted keys
(actually, data is stored as strings of bits, regardless of what those bits represent),
however, this leads to the problem of providing security for the key used to decrypt
the stored keys.

Presenting this innovative key storage method, we mainly focus on the proce-
dure of preparing and selecting the main components of DNA strands, which are
needed to carry any useful information in terms of DNA information storage. The
contributions to key storage systems of our concept are:

• increased security and usability:

– no third parties involved in the process of generation and access to keys,
– lack of weaknesses and vulnerabilities associated with storing crypto-

graphic keys on portable electronic devices,
– enormous difficulty in accessing keys by unauthorized persons in case of

control loss,
– no DNA sequencing devices required,
– faster and easier to use in comparing to the previously proposed meth-

ods,
– introduced undetectable transferability in the physical form,

DNA Based Cryptographic Key Storage System With a Simple and Automated Method. . . 113

– effectiveness confirmed by an experiment.

Furthermore, in the case of DNA components selection procedure, our contribution
is to present a simple method that allows for generating, selecting and composing
DNA data strands. We provide computer program based on a presented method
for easy use as well.

2 Bio-cryptography
Using DNA strands to store information and even perform simple “calculations”

is not a completely new idea. Adleman in his work showed the possibility of using
fragments of specially prepared DNA strands to solve the problem of Hamilton’s
path [5]. Gehani together with others created the basis of DNA-based cryptosys-
tems based on the idea of OneTime Pad [6]. In their work, Y. Zhang, X. Lui and
M. Sun showed a practical implementation of the problem of key distribution for
the OTP method [7]. The sequence of nucleotides in a randomly selected fragment
of DNA is used as the key to encrypt the message. They replaced the explicit text
with a sequence of bits and using the XOR function joined with the key string.
(The key, based on the DNA sequence, can be created by using one of the possi-
ble substitutions of nucleotides presented in Table 1). Next, the “DNA key” was

Table 1: DNA nucleotides substitution scheme

Nucleotide Binary string
A 00
C 01
T 11
G 10

“glued” to the plasmid and placed in the bacterial cell. The environment inside the
bacteria allows them to stably hold the information in the DNA strand, which is
very sensitive to changes in the temperature and pH of the solution in which it
is located. The stability of the DNA accumulated in bacterial cells carried out in
the state of spore is impressive. Scientists were able to read genetic material from
Subtilis bacteria, which is millions of years old [8, 9]. Modern laboratory techniques
allow for stable storage of synthetic DNA in Silica for thousands of years [10]. This
may be important if it is necessary to store relevant in-formation (cryptographic
information) for a very long time. Traditional storage technologies, such as mag-
netic devices and optical discs, are not reliable for long-term data storage. Their
estimated life span is equal to about 50 years [11]. Halvorsen and Wong in their
paper [12] showed an interesting, simple and secure system for data encryption and
decryption using DNA self-assembly and PCR-based decoded information reading
method. Tanaka, Okamoto and Saito presented a system for public key distribu-
tion based on DNA as a one-way function [13]. Using the methods and algorithms
described in the works of A. Leier [14, 15], one can hide the message in a DNA se-
quence in an encrypted or unencrypted way. Such steganography techniques require
active synthesis of deoxyribonucleic acid chains. The text is encrypted directly in

114 M. Miśkiewicz, A. Kuzdraliński, D. Rusinek, B. Księżopolski

the series of A, C, T and G, or special groups are identified later than counter-
parts of binary zeros and ones. The presented methods require both synthesis and
sequencing devices at almost every stage of work with data stored in DNA, which
seems to be an inconvenience in a certain class of applications. It applies further
some ideas presented in the last two publications. The DNA chain can also be
successfully used in forensics [16] and for invisible product tagging [17].

3 The method
In this paper we use the concept presented in the work of [14] and [18], where the

single bits of information are represented by groups of nucleotides. With certain re-
strictions, this solution allows for relatively easy generating sequences of data stored
in DNA without the need to use synthesis devices. The process of preparing data
containing secret information, for example password or cryptographic keys, without
third parties’ engagement during the synthesis process significantly increases data
security. The change that we propose relates to the mentioned concept is the use
of the phenomenon of DNA strand elongation. In Leier’s work, the DNA fragments
are joined by so-called “sticky ends”, with the participation of the Ligase enzyme.
As the author himself writes, this process takes a relatively long time (about 20
hours). In addition, it requires the preparation of twice as much DNA material
for the construction of fragments encoding bits of information. In our method, we
use another enzyme, called DNA polymerase. We can get the full thread in less
than an hour. In addition, the costs associated with preparing components for the
construction of a thread with recorded bits are 50% lower, which is a significant
improvement relating to Leier’s method. The method we use is based on the PCR
reaction. The oligonucleotides used in the reaction are primers for the DNA poly-
merase and hybridize at 20 nt sections to form a 380 nt strand of DNA. Reading
is also performed using PCR in the classic reaction with two primers, where the
forward primer is common to both the bit position reading reaction “0” and “1” and
amplify the entire segment. Leier’s group uses ligation, which is 100 – 500 times
more expensive than our method. In addition, the joining process in our method
takes about an hour, while Leier’s even over 1 day. Our technology only needs
a thermal cycler and electrophoresis apparatus, unlike the Leier’s method, where
more equipment and reagents are needed.

3.1 DNA storage data structure

DNA strands with data stored within comprise a series of specially prepared
components — building blocks. These building blocks in fact are shorter fragments
of single-stranded DNA. The general shape of single components is presented in
Figure 1. The major part named “content” identifies some sort of data stored as a
series of nucleotides. These nucleotides can represent a bit or index of extracting
parts. The end regions called “binding sites” are fragments of DNA strand that can
easily bind to other complementary parts connected to the other building blocks to
produce longer strands as a series of bits. In the simplest case to store data in DNA
as a series of 0 and 1 bits, one needs at least four structurally similar fragments
(see Figure 2). Two of them named Start and End start and end DNA strands

DNA Based Cryptographic Key Storage System With a Simple and Automated Method. . . 115

content binding sitebinding site5' 3'

Figure 1: General structure of single component (single-handed DNA fragment)

Figure 2: Structural components to build a simple DNA data strand and its detailed
structure

Figure 3: Example of structure of four-bit DNA strand

Figure 4: Example of an arrangement of nucleotides in the 5 ’strand of the discussed
data strand components

containing data. “0” and “1” fragments represent bits of data. An example of the
general structure of a four bits single DNA strand is shown in Figure 3.

3.2 Detailed structure of data strand components
As it was mentioned earlier, individual components for building a DNA strand

with data are 20 nucleotide fragments of single-stranded DNA (usually called
primers). They are both shown in the pictures as “binding site” and fragments
named “Start” and “End”. Figure 4 shows an example of the structure of a DNA
strand considering the sequence of nucleotides in the mentioned fragments. As it
turns out, one of the major problems in creating the individual components is the
correct selection of these 20 nucleotide DNA fragments (primers). This issue is so
important that much attention was paid to it when designing data storage systems
based on DNA strands. The problem is widely discussed in [22].

3.3 Binding sites
So-called “binding sites” are used to assemble a strand of DNA containing the

desired bit string. Assembling DNA strands with the use of DNA polymerase re-
quires the existence of specially selected fragments of single-stranded DNA in the

116 M. Miśkiewicz, A. Kuzdraliński, D. Rusinek, B. Księżopolski

reaction environment. Side by side “data” components are assembled using com-
plementary single-stranded DNA fragments. The simplified binding process using
“binding sites” and the direction of the elongation process on complementary DNA
strands are shown in the Figure 5.

Figure 5: Connection using “binding sites” and the direction of the elongation pro-
cess on complementary DNA strands

DNA data strand structure looks like this:

S − s0 −B1 − s1 −B2 − s2 − . . .− s(n−1) −Bn − sn − E,

where Bn denotes “0” or “1” bit components. sn are corresponding binding sites.
As one can see, n different binding sites are required. Biological limitations related
to the procedure of creation data stands from DNA fragment and read them by
gel electrophoresis cause that the number of bits carried by DNA strand is not
enough to store, for example, a long cryptographic key (1024 to 4096 bits) in a
single strand. The reasonable total length of DNA strand that can be used for data
storage considered in this paper is about 1000 bp. For such strands the number
of stored bits is about 32, so 1024-bit keys require 32 different DNA strands. It is
therefore necessary to introduce a system of indexing individual strands or even
individual keys if a multi-key system is introduced.

3.4 DNA fragments selection procedure

The procedure for preparing DNA fragments for the described method must
consider many aspects related to the process of hybridization and extension of DNA
strands. In this process, we are dealing with molecular mechanisms that depend on
many factors and thermodynamic parameters. Many of these parameters depend
on the structure of the DNA strand itself, so the arrangement of nucleotides cannot
be chosen completely arbitrarily. There are many conditions that must be satisfied
to prepare DNA fragments with proper nucleotides arrangement, and there are
known many approaches to solve the problem of so-called DNA codes.

The procedure used in the presented method to select the proper DNA frag-
ments comprises in general the following steps:

1. Generating and selecting a set of random strings of nucleotides.

2. Providing extended calculations and verification tests.

3. Previewing and final selection of required components.

4. DNA strands structure building.

DNA Based Cryptographic Key Storage System With a Simple and Automated Method. . . 117

The general workflow is presented in Figure 6. A detailed description of the pre-
sented procedure will be accompanied by a presentation of the components of the
computer program in which the procedure has been implemented. Program is writ-
ten in Python programming language with use of QT5 widget libraries. The main
window of the program is presented in Figure 7. Program contains four tabs named:
Generator, Formatter, Selector and Composer, which are related to the steps enu-
merated in general procedure scheme.

Figure 6: The general workflow for the procedure of generating and selecting primers
for DNA data strands

3.4.1 Primers generator

In the first step program allows to generate a set of random strings of nucleotides
with a specified length. These types of strings are nothing more than a series of
letters A, C, T and G arranged in a random order. The number of generated strings
and its length can be easily set using The Length input field and The Number of
Primers field in The Primers section (see Figure 7).

If the proper checkboxes are set, every string is tested for presence of the fol-
lowing structures:

• repeats — repeating over four times adjacent assembly of two nucleotides,
e.g.: ...ATATATATAT...,

• runs — the same nucleotides repeated over four times next to each other,

• percentage of C and G nucleotides in the fragment.

The presence of these structures has a significant impact on the biochemical char-
acteristics of the generated fragments in relation to their further use. It is believed
that the high stability of primers desired in the PCR process is largely related to
the mentioned structures. If “repeats” or “runs” occur in the processed string, the
string is eliminated. The same is true for “GC content” if the percentage of G and
C nucleotides is outside the selected range.

118 M. Miśkiewicz, A. Kuzdraliński, D. Rusinek, B. Księżopolski

Figure 7: Main window of computer program for selecting DNA components (left)
and Generator tab (right)

The Temperature section allows setting and controlling the melting temperature
for generated fragments (and correlated primers). The highest stability of PCR
procedure is guaranteed if the temperature is between 58 and 62 degrees Celsius.
For the generated strings, the melting temperature is calculated using the following
formula:

Tm = 4(G+ C) + 2(A+ T),

where A, C, T , G denote the number of corresponding nucleotides. If the temper-
ature is within a specified range, the string is stored for further processing.

Output file button allows the user to select the file in which the drawn fragments
will be saved. Data is saved in a simple text format where each line contains a
single fragment stored as a string of nucleotides. Start button begins the process
of generation. Due to the fact that the strings are random, every single “click” of
the Start button generates a new, different set of strings.

3.4.2 Extended verifications and tests

The primer3 program is used to generate additional parameters for each frag-
ment [19]. These parameters are connected with the possibility of existence of higher
order structures of the DNA stands and their overall fragment stability. Because
the primer3 program requires formatted input and some extra parameters to be
set, Formatter tab allows the user to prepare the input file for the primer3 and

DNA Based Cryptographic Key Storage System With a Simple and Automated Method. . . 119

pass additional parameters. Figure 8 shows the Formatter tab. The Input file field
allows user to select file containing a set of primers used for primer3 input gener-
ator. Output file field is used to indicate the name of the file that finally contains
the input data for the primer3 program. Sequence ID field allows for adding some
additional identification information of files while working with the program (this
has a minor meaning). The Generate Primer3 input button launches the process
of generating primer3 input file.

Figure 8: The Formatter tab

Primer3 parameters field allows the user to specify set of additional parame-
ters required by primer3 program. These parameters describe PCR reaction condi-
tions [21]:

• Monovalent Salts (mM) — the millimolar (mM) concentration of monovalent
salt cations in the PCR. Primer3 uses this argument to calculate oligo and
primer melting temperatures using this parameter.

• Divalent Salts (MgCl2+, mM) — the millimolar concentration of divalent
salt cations (usually MgCl2+) in the PCR. Primer3 converts concentration of
divalent cations to the concentration of the monovalent.

• DNTP Concentration (mM) — the millimolar concentration of the sum of
all deoxyribonucleotide triphosphates. This argument is considered for oligo

120 M. Miśkiewicz, A. Kuzdraliński, D. Rusinek, B. Księżopolski

and primer melting temperatures, for PCR product melting temperature, or
for secondary structure calculations only if Divalent Salts is greater than 0.0.

• DNA Concentration (mM) — Value to use as nanomolar (nM) concentration
of each annealing oligo over the course of PCR. Primer3 uses this argument
to estimate oligo melting temperatures.

Figure 9: The sample data from csv file

The Run Primer3 button runs the primer3 program. The Output file field lo-
cated next to Run Primer3 button can be used to set the name of primer3 output
file. The “generate csv” button allows you to generate a csv file based on the data
contained in the output file from primer3. The csv format allows for a relatively
easy processing of the results, especially the selection of appropriate primers. The
sample data from the csv file is presented in Figure 9. The following columns in
the csv file stand for:

• sequence — primer’s nucleotide sequence,

• tm — melting temperature (described above),

• gc_per — percentage of nucleotides G and C,

• any_th — self-complementarity score of the oligo or primer, taken as a mea-
sure of its tendency to anneal to itself or form secondary structure,

• 3p_th — 3’ self-complementarity of the primer or oligo, taken as a measure
of its tendency to form a primer-dimer with itself,

• hairpin_th — the number that refers to the ability to create higher order
structures called „hairpins”.

Primer3 calculates these parameters using some thermodynamics models. They
are highly correlated with so-called “higher order structures” and possible primer
interactions (see Figure 10). Properly chosen set of primers prevent creation of
self-dimmer, cross-dimmer and hairpins [20].

DNA Based Cryptographic Key Storage System With a Simple and Automated Method. . . 121

Figure 10: The higher order structures of primers: a) Hairpin, b) Self-dimmer, c)
Cross-dimmer

Figure 11: The Selector tab

3.4.3 The selection of primers

In the Selector tab (see Figure 11), the user can select primers basing on the
information provided by the primer3 program. The Input file field allows the user
to point to a csv file containing the results from the primer3 program. The selec-
tion panel allows to sort the displayed records (rows). Checkboxes in the “include”
column allow to choose the fields to which the data will be sorted. “Spin buttons”
in the “priority” column allow to set the priority of sorting. First sorted is the col-
umn for which the value “1” was set, then sorting takes place for the parameter for
which the value “2” was set, etc. The “Order” column allows you to set ascending

122 M. Miśkiewicz, A. Kuzdraliński, D. Rusinek, B. Księżopolski

Figure 12: The selector table with primers

or descending sorting order. The “Preview” button displays a window with a table
containing the sorted primes (see Figure 12). Primer selections can be made in the
Table window by simply clicking on them. The selected primer is highlighted in
blue. Sorting allows the user to group the primes with the lowest values of param-
eters, such as any_th, 3p_th and hairpin_th. These primes seem to be the most
appropriate for the use in the presented storage system. The selected primes appear
in the Preview box when the Table window is closed.

3.4.4 DNA strands building

The Composer tab, presented on Figure 13 allows you to prepare components
to build a DNA strand with stored key bit information (see DNA Data structure
section).

The primers selected in the previous step are assembled into longer fragments.
The key bit structure is provided by the user via the “Bits” input field. The “Output
file” field allows the user to indicate the file into which the strings of nucleotides
forming the individual components of the DNA strand will be written. The struc-
ture of an example output file is shown in Figure 14. The labels c_n indicate
sequentially: c_0 — Start component; c_1 to c_8 — Bit component; c_9 — End
component. The nucleotide strings correspond exactly to the structural components
presented in Figure 4. The information contained in the resulting file can provide
the basis for synthesizing the DNA components necessary for the experiment.

3.5 Keys reading procedure

To determine a series of bits in an extracted and isolated key, one must perform
a two-step procedure used by Leier et al. in his work. First step is to carry out a
PCR procedure with two types of primers. Solution with isolated and replicated

DNA Based Cryptographic Key Storage System With a Simple and Automated Method. . . 123

Figure 13: The Composer tab

Figure 14: The example of The Composer output file

key must be split into two reaction tubes. To the first tube one has to add primers
corresponding to “0” bit DNA fragments, to the second reaction tube primers cor-
responding to “1” bit fragment must be added. Next for both tubes, PCR must
be performed to elongate the primers. After PCR reaction tubes should contain
shorter DNA strands with length matching to the position of “0” and “1” frag-
ments. Figure 15 shows an example of PCR performed for strand encoding 8-bit
sequence: 1 1 0 1 0 0 1 0. Second step requires implementation of gel electrophore-

124 M. Miśkiewicz, A. Kuzdraliński, D. Rusinek, B. Księżopolski

Figure 15: Expected primer length after elongation shown in example of 8-bit en-
coding DNA strand after PCR procedure

Figure 16: Example picture of gel electrophoresis performed for strands set from
picture 10. Lane 0 symbolizes distribution of molecular weight marker, lane 1:
distribution of strands length elongated with “0” primer, lane 2: distribution of
strands length elongated with primer “1”. Reading from bottom to top reveals
encoded bit sequence — see right edge of picture

sis for PCR’ed mixture with the key. Contents of both reaction tubes must be put
into gel separately on a different lane to visualize “0” bit bands and “1” bit bands.
Positions of each band are related to DNA strand length in the analyzed sample.
Because Bit fragments forming key comprise a determined number of nucleotides,
some kind of ’“quantization” must occur after electrophoresis. In other way bands
on the gel always should come up at the fixed positions showing positions of zeroes
and ones in the analyzed key. Figure 16 shows expected bands distribution, for
example, from Figure 15. To read a sequence of the entire key K every key must
be read in the mentioned way.

4 The experiment

We conducted preliminary experiments to verify the method described, which
concerned the possibility of easy and fast creation of cryptographic keys, which are
in fact a sequence of fixed bits. In order to perform the experiments, DNA compo-
nents were designed to create an eight-bit strand. Using the procedure described in
the “DNA fragment selection procedure” section, we generate sixteen 20-nucleotide
fragments (see Figure 17), from which components were then created to “assemble”

DNA Based Cryptographic Key Storage System With a Simple and Automated Method. . . 125

Figure 17: The set of primers selected for the experiment using a described com-
puter program

Figure 18: The final structure of DNA strands component built from selected
primers (due to the elongation process some DNA components have to be syn-
thesized as its complementary counterparts)

a DNA strand with a given bit pattern. We prepared the DNA components so that
they could encode the string “10100101”. The exact single DNA strands used in
the experiment are presented in Figure 18. Authors of this article can provide the
details of the biochemical procedure and primers used in the experiment. The elon-
gation process resulted in a DNA strand of 420 nt length. The obtained material
was then subjected to a reading process using the method described in the “key
reading” section. The reading process revealed the expected key bit pattern.

5 Conclusions and future work

A simple cryptographic keys creation and storing system based on DNA strands
were presented. Despite the considerable complexity because of the relatively large
number of necessary elements, the system does not require the participation of third
parties in very important steps such as the key creation and reading. In addition,
a computer program and a simple selection procedure for primers necessary in
preparing DNA strands with stored keys is presented. The program was successfully
used during the experiment. However, it should be stated that the experiment was
successfully conducted on a small scale. Further work should therefore focus on

126 M. Miśkiewicz, A. Kuzdraliński, D. Rusinek, B. Księżopolski

extending the system so that keys with meaningful lengths can be operated on.
The program itself, although fulfilling its task, also needs a lot of work.

References

[1] Yang, K., Hicks, M., Dong, Q., Austin, T., and Sylvester, D. (2016). A2: Analog
malicious hardware. In 2016 IEEE Symposium on Security and Privacy (SP),
pages 18–37.

[2] Becker, G. T., Regazzoni, F., Paar, C., and Burleson, W . P . (2014). Stealthy
dopant-level hardware trojans: extended version. Journal of Cryptographic En-
gineering, 4(1):19–31.

[3] Kumar, R., Jovanovic, P., Burleson, W., and Polian, I. (2014). Parametric tro-
jans for fault-injection attacks on cryptographic hardware. In 2014 Workshop
on Fault Diagnosis and Tolerance in Cryptography, pages 18–28.

[4] Savage, E., Gilbert, J., and Radasky, W. (2010). The early-time (e1) high-
altitude electromagnetic pulse (hemp) and its impact on the U.S. power grid.
Technical report, Metatech Corporation, 358 S. Fairview Ave., Suite E Goleta,
CA 93117.

[5] Adleman, L. M. (1994). Molecular computation of solutions to combinatorial
problems. Science, 266(5187):1021–1024, DOI: 10.1039/C0CS00051E

[6] Gehani, A., LaBean, T., and Reif, J. (2004). DNA-based Cryptography, pages
167–188. Springer Berlin Heidelberg, Berlin, Heidelberg, DOI: 10.1007/978-3-
540-24635-0_12

[7] Zhang, Y., Liu, X., and Sun, M. (2017). Dna based random key gener-
ation and management for otp encryption. Biosystems, 159:51–63, DOI:
10.1016/j.biosystems.2017.07.002

[8] Cano, R. and Borucki, M. (1995). Revival and identification of bacterial spores
in 25- to 40-million-year-old dominican amber. Science, 268(5213):1060–1064,
DOI: 10.1126/science.7538699

[9] Vreeland, R., Rosenzweig, W., and Powers, D. (2000). Isolation of a 250-
million-year-old halotolerant bacterium from a primary salt crystal. Nature,
407(6806):897–900, DOI: 10.1038/35038060

[10] Grass, R. N., Heckel, R., Puddu, M., Paunescu, D., and Stark, W. J.
(2015). Robust chemical preservation of digital information on DNA in sil-
ica with error-correcting codes. Angewandte Chemie International Edition,
54(8):2552–2555, DOI: 10.1002/anie.201411378

[11] Shah, S. B. and Elerath, J. G. (2005). Reliability analysis of disk drive fail-
ure mechanisms. Annual Reliability and Maintainability Symposium, 2005.
Proceedings., pages 226–231.

DNA Based Cryptographic Key Storage System With a Simple and Automated Method. . . 127

[12] Halvorsen, K. and Wong, W. P. (2012). Binary dna nanostructures for data
encryption. PLOS ONE, 7(9):1–4, DOI: 10.1371/journal.pone.0044212

[13] Tanaka, K., Okamoto, A., and Saito, I. (2005). Public-key system using dna
as a one-way function for key distribution. Biosystems, 81(1):25–29, DOI:
10.1016/j.biosystems.2005.01.004

[14] Leier, A., Richter, C., Banzhaf, W., and Rauhe, H. (2000). Cryptogra-
phy with dna binary strands. Biosystems, 57(1):13–22, DOI: 10.1016/s0303-
2647(00)00083-6

[15] Shiu, H., Ng, K., Fang, J., Lee, R., and Huang, C. (2010). Data hiding meth-
ods based upon dna sequences. Information Sciences, 180(11):2196–2208, DOI:
10.1016/j.ins.2010.01.030

[16] Oh, J.-M., Park, D.-H., and Choy, J.-H. (2011). Integrated bio-inorganic
hybrid systems for nanoforensics. Chem. Soc. Rev., 40:583–595, DOI:
10.1039/C0CS00051E

[17] Cormier, S., Shearman, J., and Hogan, M. (2018). Dna in your jeans? effect of
abrasion and bleaching on dna tagged denim. AATCC Review, 18:44–48, DOI:
10.14504/ar.18.5.4

[18] M. Miśkiewicz, B. Księeżopolski (2019). Cryptographic keys management sys-
tem based on DNA strands. Federated Conference on Computer Science and
Information Systems (FedCSIS), Leipzig, Germany, 2019, pp. 231–235, DOI:
10.15439/2019F313

[19] Koressaar T, Lepamets M, Kaplinski L, Raime K, Andreson R and Remm M.
Primer3_masker: integrating masking of template sequence with primer design
software. Bioinformatics 2018; 34(11): 1937–1938, DOI: 10.1093/bioinformat-
ics/bty036

[20] Untergasser A, Cutcutache I, Koressaar T, et al. Primer3 — new capabilities
and interfaces. Nucleic Acids Res. 2012;40(15):e115. doi:10.1093/nar/gks596

[21] https://apps.thermofisher.com/apps/help/MAN0015956/GUID-0BB0CF63-
1755-4A58-B7C8-342FAE393211.html, access 28 July 2021.

[22] O. Milenkovic and N. Kashyap, On the design of codes for DNA
computing, Coding and Cryptography. Springer, 2006, pp.100–119, DOI:
10.1007/11779360_9

Comparative Analysis of Selected
Anthropomorphic Grippers
Constructions

Paweł Olszewski∗

1 Introduction

Technological progress in the field of robotic grippers is mainly caused by the
demands of industrial automation and production lines. Dedicated solutions used
there must fulfill specific requirements such as high resistance to environment condi-
tions, durability, high speed or precision and be able to efficiently carry out specific
tasks assigned to them. In contrast to this group of robotic grippers, where esthetic
matter is less important and similarity to human hand mostly not even considered,
there is also a second, smaller group of constructions, inspired by the human hand.
Beside the esthetic matter and the higher level of acceptance from people work-
ing in collaboration with such devices, this second type of grippers has also an
undeniable advantage of interacting with interfaces and tools originally invented
with human hands in mind. This ability is crucial when it comes to prosthetic
applications, but can also be very useful in developement of personal robotic as-
sistants, whose most tasks are to be done in human oriented environment. Despite
many attempts taken until now, none of them resulted with ultimate solution. All
the existing constructions are more or less simplified in comparison to the original
human hand. This situation is caused mainly by the human hand high level of
complexity and technological limitations that engineers must somehow overcome
during production process.

In this paper selected anthropomorphic grippers constructions will be intro-
duced and compared to each other and to the original human hand. The work
presents the number of degrees of freedom, that each construction offers, and their
similarity to human hand. In this paper the comparative analisis concerns four
robotic grippers: AR10, SVH, Shadow Dexterous Hand and Shadow Dexterous
Hand Lite. These are the ones of the most popular and easy available.

∗Corresponding author — pawel.olszewski@mail.umcs.pl

129

130 P. Olszewski

2 The human hand
Human hand is capable of amazing dexterity and performs many functions,

from wide range of grasping to delicate and precise manipulation tasks.
Human hand consists of 14 phalanges bones, 5 metacarpal bones and 8 wrist

bones, which gives total of 27 [2]. Hand movements are provided by a complex
system of muscles and tendons spread along the bone structure and specialized in
a way assuring high strength and dexterity, keeping low mass at the same time.

To perform a succesfull grasp of an object multiple digits must firstly spread
open and then close around it. Futhermore, ability to move large number of those
digits in independ way is highly relevant for precise manipulation of small objects.

Despite the fact that human hand is often treated as the ultimate solution, even
its fingers movements are restricted in some way. For example, we are capable of
touching the palm with every one of our tips, but we cannot do the same touching
back site of the hand with them. We can also set our thumb opposite to other
fingers, but we cannot set those fingers oppose one to another [6]. Because of the
presence of biomechanical passive couplings between digits in human hand, there
are situations when activity aiming to move only one digit will tend to move the
adjacent ones as well.

2.1 The human hand kinematic model

Figure 1: Kinematic model of human hand [9]

Before further analysis of robotic grippers, it is natural to choose the kinematic
model of the human hand — theirs prototype. The work [9] used magnetic res-
onance imagining (MRI) images of a hand and its bones in various postures to

Comparative Analysis of Selected Anthropomorphic Grippers Constructions 131

determine precise orientations and positions of the axes of rotation for each finger.
Because models were created with robotic systems in mind to avoid friction and
control difficulties in them, only rotary joints were considered during model cre-
ation. This approach resulted in hand models of different accuracy and complexity
— three of them were selected and discussed by authors. Those are 22, 24 and 33
DoF kinematic models. The choosen reference model (Fig. 1) is the middle one with
24 DoF, where arrows shows the axes of possible flexion and numbers placed near
them tells us about the index of such axe in this particular joint. Some joints, like
the little finger DIP joint, provides only one flexion axe, others allows movement
in two axes — like the index MCP joint (Fig. 2).

Figure 2: Bones in human hand [10]

We can see that two most distal joints of all fingers, except the thumb, are the
1-axe joints. Furthermore, third joint of every finger and second joint of the thumb
are the 2-axe joints. The fourth joint of middle, ring and index fingers provide them
additional single-axed movement in the wrist.

3 AR10 Humanoid Robot Hand

AR10 Humanoid Robot Hand (Fig. 3) is construction made by Active8 Robots
company and offers movement in 14 joints, each consisted of only one flexion axe
and limited to 10 degreees of freedom (DoF) provided by the same number of
linear actuators mounted inside the hand [4]. Weight of this gripper is 0.475 kilo
and when its middle finger is in straight position the gripper reaches length of 200
milimeters [11].

132 P. Olszewski

It was dedicated for academic purposes as low cost alternative for other con-
structions and can work as standalone or in a bigger system after being mounted
on robotic arm such as Sawyer, Rethink Robotics or Baxter.

AR10 was designed with grasping tasks in mind and was inspired by human
hand grasping capabilities and look. Finger tips can be dissassembled in a fast way
and easily replaced. Provided as opensource fingertips models makes it easier to
redesign them, quickly produce with 3D printer and adjust hand for own purposes.

Built in electronics has four free connections allowing to connect up to four touch
sensors or two additional drives. Those additional drives can assure wrist movement
— when using them that way, we must reserve two connections for signals returning
from drive to electronics to provide proper movement. Communication with gripper
is provided by USB or serial port and it is fully compatible with Robot Operating
System (ROS). The gripper is available in left and righthanded version.

3.1 AR10 kinematic model

Every finger, except the thumb, has 3 joints (Fig. 4), however only 2 inde-
pendents drives. It means, that in all of them the 2 highest joints depend on the
one engine and exist in constant cooperation. The thumb possesses 2 independent
drives controlling 2 joints.

4 Schunk SVH

SVH (Servo-electric 5-Finger Gripping Hand) is an antropomorphic robotic
gripper (Fig. 5) with length of 242 milimeters and total weight of 1.3 kilos, pro-
vided by SHUNK company [12]. It is equipped with five fingers offering movement

Figure 3: AR10 robotic gripper [11]

Comparative Analysis of Selected Anthropomorphic Grippers Constructions 133

in 9 DoF assured by 9 individual drives. Gripper pose can be changed in 20 joints
acompishing wide range of grips. Elastic gripping surface assures that object grasp-
ing would be more stable. Highly compact gripper construction integrates all of its
electronics inside the wrist. The producer delivers dedicated driver for using the
gripper with ROS. Communication with the device is possible through RS-485
serial interface.

Figure 4: Kinematic model of AR10 (based on Shadow Dexterous Hand Specifica-
tion)

Figure 5: SHUNK SVH robotic gripper (Assembly and Operating Manual SVH)

134 P. Olszewski

Hand was developed with grasping and object manipulation tasks in mind, but
as the result of wide range of possible poses it would be also useful in human-robot
communication using gestures. The wrist movements are not provided by hand in
any form. Integration with robotic arms, available on the market, is possible due
to the well defined interfaces. It is offered in left- and righthanded version.

4.1 SVH kinematic model

The thumb, index finger and middle finger have 2 independent engines, while
the other two have only one drive each. One servo-motor is responsible for opposite
movement of the thumb in joint J1 (Fig. 6) and small finger together with ring
finger in joint J5. Second servo-motor controlls thumb flexion in coupled joints J2,
J3 and J4. Separate two servo-motors are independently driving flexion of index
finger in joint J6a and middle finger in joint J7. Single servo-motor is responsible
for spreading small, ring and index finger in joints J6b, J8b and J9b. Next servo-
motor controlls index finger flexion in coupled joints J10 and J14, similarly single
servo-motor controlls middle finger flexion in coupled joints J11 and J15. For flexion
of ring finger in all three coupled joints (J8a, J12 and J16) is responsible only one
servo-motor. All three joints (J9a, J13 and J17) of small finger are also mechanically
coupled and only one servo-motor is responsible for its flexion movement [5].

Figure 6: Kinematic diagram of the SVH [5]

Comparative Analysis of Selected Anthropomorphic Grippers Constructions 135

5 Shadow Dexterous Hand
Shadow Dexterous Hand is an advanced humanoid construction of robotic grip-

per made by Shadow Robot Company (Fig. 7). It weights 4.3 kilo and has total
length of 448 milimeters [13]. Integrated thumb and four fingers (with additional
two movements possible in the wrist) are offering movement in 24 joints with 20
DoF. Gripper was designed to be highly similar to the human hand, reproduce
as closely as possible its dexterity and kinematics and also mimic its shape and
proportions.

Figure 7: Shadow Dexterous Hand [7]

Producer states that gripper can be equipped with up to 129 sensors, including
position, strength, pressure and touch sensors. Construction, due to full compati-
bility with ROS, offers quick way of beggining work. Due to gripper flexible design
it can be adjusted for specific tasks or integrated as an element of bigger system
cooperating with one of many robotic arms. It is available in right- and lefthanded
version.

5.1 SDH kinematic model
The index, middle and ring finger in the SDH hand model possess 3 independent

drives each (Fig. 8). The little finger has more drives – in the number of 4. The
most numerous independent drives are located in the thumb, who has the 5 of them.
Moreover, 2 drives are situated in the wrist. Flexion movements in joints FF1 and
FF2 are coupled and actuated by single drive. The same situation refers to middle
finger, ring finger and little finger joints 1 and 2. Two separated drives were used
only for thumb flexion movement in joints TH1 and TH2. Dedicated drives were

136 P. Olszewski

also used for assuring flexion movement each one for joints 3 and 4 of all fingers
including thumb, which gives 10 drives.

Figure 8: Kinematic model of SDH [3]

6 Shadow Dexterous Hand Lite
Shadow Dexterous Hand Lite (Fig. 9), made by Shadow Robot Company, was

designed to be smaller, lighter, simpler and cheaper alternative for basic version of
Shadow Dexterous Hand. It also maintains to mimic human-like kinematics as its
predecessor. It offers movement in 16 joints with total of 13 DoF. Unlike SDH, in
SDHL there is no movement in wrist and the little finger is missing. As the result,
the integrated forearm of the hand is 121 mm smaller than the SDH, which gives
total length of 327 mm. Secondly, the hand is also lighter (2.4 kg), weighting 1.9 kg
less than the full version [14]. Hand was designed for tasks that needs flexibility and
dexterity at the level of human hand, but it is not necessary for each of five fingers
to be present. Like in the SDH, the construction offers quick way of beggining work
due to full compatibility with ROS. Gripper is available in right- and lefthanded
version.

6.1 SDHL kinematic model
When it comes to kinematic diagram (Fig. 10), it is partialy similar to the one

of SDH. Movement in joints 1 and 2 is coupled in every finger beside the thumb and

Comparative Analysis of Selected Anthropomorphic Grippers Constructions 137

Figure 9: Shadow Dexterous Hand Lite [8]

driven by dedicated drive. Movements in joints 3 and 4 for every finger are provided
by independent two drives each. Also joints 1,2,4 and 5 of thumb are independent
and moved by individual drives. That gives total of 13 independent drives.

7 Comparison

The largest number of joints and DoF among all analyzed grippers is observed
with SDH model, the smallest number with AR10. The similar situation is visible
in the number of joints and DoF within their thumbs (Tab. 1). In all of the dis-
cussed models joints number is higher than DoF number due to presence of drives
responsible for movement in coupled joints. For example in the SVH model single
drive is responsible for movement in three coupled joints. The biggest difference
between the number of joints and DoF is present in model SVH, in which the joints
number (20) is more than two times higher than the DoF number (9). Despite small
number of DoF this model still allow a high dexterity and precision.

In most cases the bigger number of DoF results in higher weight and increased
size of the gripper. SDH, the model containing the biggest number of joints and
DoF, is more than ten times weightier and two times bigger than the AR10 hand,
which contains half of the DoF located in the first one. In the SDH gripper higher
weight is also connected with the presence of augmented wrist and its drives.

Number of DoF is strictly connected with the number of individual drives among
the analysed models in the fingers (Tab. 2). Among the analysed models there are
from one to five individual drives responsible for particular flexion axes. In all of
the models the thumb possesses the largest DoF number, or at least the number
equal to the other fingers.

138 P. Olszewski

Table 1: Basic parameters of selected robotic hand models

AR10 SVH SDH SDHL

Weight [kg] 0,475 1,3 4,3 2,4
Length [mm] 200 242 448 327

Joints 14 20 24 16
DoF 10 9 20 13

Thumb [DoF] 2 2 5 4
Thumb [joints] 2 4 5 4
Actuated wrist NO NO YES NO

8 Conclusion

The main purpose of antropomorphic robotic grippers constructions is to recre-
ate possibly the most accurate reconstruction of human hand. The similarity of
the robotic gripper dexterity to the human hand is demonstrated mainly by the
number of joints and DoF — the bigger number of them results in the bigger set
of various finger flexion movements. In this paper the comparative analisis con-
cerns four robotic grippers: AR10, SVH, SDH and SDHL. These are the ones of

Figure 10: Kinematic model of SDHL [8]

Comparative Analysis of Selected Anthropomorphic Grippers Constructions 139

Table 2: Independent drives in selected robotic hand models

AR10 SVH SDH SDHL
LF 2 1 4 -
RF 2 1 3 3
MF 2 2 3 3
FF 2 2 3 3
TH 2 2 5 4
other - 1 (opposite) 2 (wrist) -
total 10 9 20 13

the most popular and easy available. Among them the higher similarity to the hu-
man hand demonstrates the SDH model having 24 joints and 20 DoF. Although it
does not mean that the other models are worse — their number of joints and DoF
are smaller, however they can be succesfully applied in different fields, where the
simplier constructions are desirable. They are also much more smaller and lighter
than prievously mentioned SDH. Actually the biggest construction problem is to
integrate the proper number of drives inside the robotic gripper, because of their
size.

References

[1] Assembly and operating manual SVH, Schunk Gmgh and Ca KG, 2019. Ac-
cessed on: Jun 15, 2021. [Online]. Available: https://schunk.com

[2] Frank P. J. van der Hulst F.P.J., Schatzle S., Preusche C., Schiele A., 2012, A
Functional Anatomy Based Kinematic Human Hand Model with Simple Size
Adaptation, 2012 IEEE International Conference on Robotics and Automa-
tion, May 14–18, Minnesota, USA.

[3] Li S., Ma X., Liang H., Gorner M., Ruppel P., Fang B., Sun F., Zhang J.,
2019, Vision-based Teleoperation of Shadow Dexterous Hand using End-to-
End Deep Neural Network, International Conference on Robotics and Au-
tomation (ICRA)

[4] Rao B., Li H., Krishnan K., Boldsaikhan E., He H. Knowledge-Augmented
Dexterous Grasping with Incomplete Sensing, arXiv:2011.08361[preprint],
november 17, 2020 [cited 2021 june 15].

[5] Ruehl S. W., Parlitz C., Heppner G., Hermann A., Roennau A., Dillmann
R., 2014, Experimental Evaluation of the Schunk 5-Finger Gripping Hand for
Grasping Tasks, IEEE International Conference on Robotics and Biomimetics
December 5–10, Bali, Indonesia.

140 P. Olszewski

[6] Schieber M. H., 2014, Constraints and Flexibility in Cortical Control of the
Hand [in] Balasubramanian R., Santos V.J. (ed.), The Human Hand as an
Inspiration for Robot Hand Development, Springer

[7] Shadow Dexterous Hand Technical Specification, Shadow Robot Com-
pany, Feb 2019. Accessed on: Jun 15, 2021. [Online]. Available:
https://shadowrobot.com

[8] Shadow Dexterous Hand Technical Specification Shadow Dexterous Hand G
Series: Shadow Hand Lite, Shadow Robot Company, Sep 2015. Accessed on:
Jun 15, 2021. [Online]. Available: https://shadowrobot.com

[9] Stillfried G., Hillenbrand U., Settles M. , van der Smagt P., 2014, MRI-Based
Skeletal Hand Movement Model [in] Balasubramanian R., Santos V.J. (ed.),
The Human Hand as an Inspiration for Robot Hand Development, Springer

[10] Xu Z., Todorov E., 2016, Design of a highly biomimetic anthropomorphic
robotic hand towards artificial limb regeneration, IEEE International Confer-
ence on Robotics and Automation (ICRA).

[11] https://active8robots.com/robots/ar10-robotic-hand/ [access: Mar 12, 2016].

[12] Assembly and operating manual SVH, Schunk Gmgh and Ca KG, 2019.
https://schunk.com [access: Jun 15, 2021].

[13] Shadow Dexterous Hand Technical Specification, Shadow Robot Company,
Feb 2019.
https://shadowrobot.com [access: Jun 15, 2021].

[14] Shadow Dexterous Hand Technical Specification Shadow Dexterous Hand G
Series: Shadow Hand Lite, Shadow Robot Company, Sep 2015.
https://shadowrobot.com [access: Jun 15, 2021].

Data Mining Procedures in the Oil
Production Prediction for Gas
Lifted Wells

Bartłomiej Bielecki
Andrzej Krajka∗

1 Introduction

Full wellbore modeling during oil production is an interesting and very compli-
cated problem. There are some collections of a huge amount of papers regarding the
simulation [22]. Modern computerization allows creating sophisticated and accu-
rate, but time-consuming models considering different approaches to the simulation.
The authors used the solution described in recent papers (cf. [3], [4]). The results
are comparable with other studies as (cf. [16], [19]). The standard simulation model
has been extended by the authors and dedicated to a gas lift procedure which is
treated as the optimization problem also appeared in the literature [18]. To increase
the oil inflow, procedures such as gas lift or water injection are employed. Three
phase flow appeared in a productive tubing string has many meaningful parame-
ters (MP) responsible for the production results. The gas is provided via annulus,
which is a space between tubing and casing strings. In an annulus, single phase gas
flow conditions are expected. Gas is injected through Gas Lift Valves (GLV) into
the tubing string. Two parameters characterizing GLV are depth and lift. The lift
means amount of injected gas, presented in millions of standard cubic feet per day
[MMScf/D].

2 Motivations and contributions

The full simulation process takes into the consideration input parameters such
as: completion, wellbore trajectory, reservoir data. Based on these inputs, the full
model of production oil (PO model) is employed. The authors wanted to check
whether the data mining algorithms can meet the production results as PO model
does. The relative error of PO was about 5 percent which is a satisfactory result.
On the other hand, this model has two significant drawbacks:

∗Corresponding author — andrzej.krajka@mail.umcs.pl

141

142 B. Bielecki, A. Krajka

• The full PO model is time-consuming and sometimes has a discontinuity.

• A large number of parameters which has to be set prior to the simulation
run.

These reasons motivated the authors to check another approach, called the MO
model, to estimate production results based on GLV parameters, bottom hole pres-
sure, and recent production results in the dedicated wellbore. We compared data
mining procedures as: neural networks, different regression models, projection pur-
suit regression (ppr), multidimensional splines approximations (polymars), support
vector machines (svm), and multiple additive regression trees (MART) approxima-
tion methods. These results may be used for:

• Pre-production wellbore simulation with the GLV lift and depth estimation.

• The real-time decisions regarding the gas injection amount

• The creation of a fuzzy controller as a future job.

• Finding the best data mining method for wellbore simulation.

To achieve the results, many runs of PO model were generated using the framework
written in C# .NET. Data was saved into the database system and data mining
methods were performed with the R Studio environment. Pseudocode and its R
code realization have been put as the attachment of this paper, so it is available for
testing. In this case, inputs are restricted to a few parameters, in comparison to the
PO model. The assumption that the total number of GLV is maximum four, has
been made. This study may be applied for pre-completion stage once a producer
analyses the best placement of GLV in a completion. Hence we consider GLV depth
and lift (injection) as the crucial input parameters of our study.

3 Data preparation

We consider the following input data:

BHP — Bottom hole pressure. This value is usually acquired from gauges at the
deepest point of each completion. Usually, this value fluctuating during the
production.

GLVdi, 1 ≤ i ≤ 4, — the depth of the i-th GLV (NA if i-th GLV is closed and the
injection is stopped).

GLVli, 1 ≤ i ≤ 4, — the amount of the gas injected from the annulus to the tubing
string via i-th GLV, counted in million standard cubic feet per day unit
[MMScf/D] (NA if i-th GLV is closed and the injection is stopped).

POIL —The value of the oil production of the PO model, identified at the surface,
as the sum of the whole inflow from the production layers.

Data Mining Procedures in the Oil Production Prediction for Gas Lifted Wells 143

This research is based on 2810 PO model different runs. Different wellbore and
reservoir conditions as the typical at an oilfield has been simulated. Records are
joined into pairs on three different ways (cf. for eg. Table 1).

The technical field AmGLV indicates the number of used GLV. As it is shown,
the records are paired as follows:

• in type 1 only one parameter among GLV di, i = 1, 2, 3, 4, is different

• in type 2, only one parameter among GLV li, i = 1, 2, 3, 4, is different

• in type 3, one more GLV is added.

Furthermore, we created pairs that changes as small as it is possible. For two records
paired one is deleted and one is passed to the next possible pair. Pairs described
above will be the product the following records in the data frame Result1. Such
that from Table 1 we may obtain results as in Table 2.

In the column dPOIL we storage the value of increase of the oil production. In
type 1, x and R1 indicate the GLV number which has been replaced and the value
of change this GLV depth, respectively. GLVs are ordered by the depth ascending.
In type 2, x and R2 contains the GLV number and this GLV lift change. In type
3, the x indicates new GLV parameter (number) and depth and lift this new GLV
are placed in R1 and R2, respectively. Now we add the extra fields to our structure
Result1 according to the formulas:

PILi = GLV di ∗ (1 +GLV li),

P IEi = GLV di ∗ exp(GLV li),
P IDi = GLV di/(1 +GLV li), (3.1)
PIVi = log(GLV di)/(1 +GLV li),

i = 1, 2, 3, 4.

Table 1: Example of input data records paired in different types

Type POIL BHP GLV d1 GLV l1 GLV d2 GLV l2 GLV d3 GLV l3 GLV d4 GLV l4 AmGLV
1 3823.5 2000 4000 1 4100 1 4800 2 NA NA 3

3125.9 2000 4000 1 4200 1 4800 2 NA NA 3
2 4229.8 2000 4000 1 4100 1 5000 1 NA NA 3

2287.3 2000 4000 1 4100 1 5000 2 NA NA 3
3 2754.4 3200 4900 4 5100 1 NA NA NA NA 2

2983.9 3200 4900 4 5100 1 5800 2 NA NA 3

Table 2: Data frame Result1 obtained from data presented in Table 1

Type dPOIL POIL BHP GLV d1 GLV l1 GLV d2 GLV l2 GLV d3 GLV l3 GLV d4 GLV l4 AmGLV x R1 R2
1 −697.6 3823.5 2000 4000 1 4100 1 4800 2 NA NA 3 2 100 NA
2 −1942.5 4229.8 2000 4000 1 4100 1 5000 1 NA NA 3 2 NA 1
3 229.5 2754.4 3200 4900 4 5100 1 NA NA NA NA 2 2 5800 2

144 B. Bielecki, A. Krajka

In practical aims we consider the following three situations:

S1. We have only one GLV with GLV d1 and GLV l1 parameters.

S2. We have two GLV with GLV di and GLV li, i = 1, 2, parameters.

S3. We have three GLV with GLV di and GLV li, i = 1, 2, 3, parameters.

As we mentioned GLV points GLV di and GLV li are ordered ascending accord-
ing to {GLV di, i ≥ 1}. Hence we identified 17 new possible actions that appeared
under these changes.

I. We changed GLV di value, and replaced by:

[A1.] one GLV in the situation S1.

[A2.] GLV d1, in the S2 situation

[A3.] GLV d2, in the S2 situation

[A4.] GLV d1, in the S3 situation

[A5.] GLV d2, in the S3 situation

[A6.] GLV d3, in the S3 situation

II. We change GLV li value for:

[A7.] one GLV in the situation S1.

[A8.] GLV l1, in the S2 situation

[A9.] GLV l2, in the S2 situation

[A10.] GLV l1, in the S3 situation

[A11.] GLV l2, in the S3 situation

[A12.] GLV l3, in the S3 situation

III. We add one more injection point:

[A13.] in situation S1 with smaller depth than GLV d1

[A14.] in situation S1 with greater depth than GLV d1

[A15.] in situation S2 with smaller depth than GLV d1,

[A16.] in situation S2 with middle depth between GLV d1 and GLV d2,

[A17.] in situation S2 with greater depth than GLV d2, i = 1, 2.

The general aim of this paper is to give the producer the feedback for the
pre-completion process about the correct placement of GLV and consider actions
A1, A7, A13, A14 in the situation S1, A2, A3, A8, A9, A15, A16, A17 in the situation
S2 and A4, A5, A6, A10, A11, A12 in the situation S3 to obtain the desired change
of the production OIL (POIL). We do not consider more than four GLV.

Data Mining Procedures in the Oil Production Prediction for Gas Lifted Wells 145

4 Models

Using the R language we model the following dependence types:

Type 1:
R1 = f(dPOIL, POIL,BHP,GLV di, GLV li, P ILi, P IDi, P IEi, P IVi, i = 1, 2, 3, 4),

Type 2:
R2 = g(dPOIL, POIL,BHP,GLV di, GLV li, P ILi, P IDi, P IEi, P IVi, i = 1, 2, 3, 4),

Type 3: [
R1
R2

]
=

[
f(dPOIL, POIL,BHP,GLV di, GLV li, P ILi, P IDi, P IEi, P IVi, i = 1, 2, 3, 4),
g(dPOIL, POIL,BHP,GLV di, GLV li, P ILi, P IDi, P IEi, P IVi, i = 1, 2, 3, 4).

]

As the possible f and g function we consider:

lm Although the linear regression allows investigating only the linear dependence,
using the PIL, PIS, PID and PIV transformation (cf. (3.1)) we investigate
some nonlinear types of dependencies also.

the neural net nnet Described in [23] models for feed-forward neural networks
with a single hidden layer and for multinomial log-linear (R library nnet with
9 neurons in one hidden layer and linear function as output).

the SNNS neural network The Neural Networks in R using the Stuttgart Neu-
ral Network Simulator (SNNS) described in [26] and [25] (mlp, jordan, rbf,
elman from R library RSNNS with 9 neurons in hidden layer),

ppr The projection pursuit regression model developed in [10] (ppr in R library
stats) consists of linear combinations of non-linear transformations of linear
combinations of explanatory variables.

spline regression model The multivariate adaptive polynomial spline regression
(polymars from library polspline) [13, 9, 21]. An adaptive regression proce-
dure using piecewise linear splines to model the response.

svm Support vector machines model (svm from library e1071 with C = 1, γ =
0.0476, ε = 0.1 and radial kernel). The review of svm methods is presented in
[1] whereas the used algorithm in the C++ libsvm library is described in [5].

MART . The stochastic Multiple Additive Regression Trees method (MART has
been taken from the library gbm) as the implementation of the gradient tree
boosting methods for predictive data mining (regression and classification).
For a quick overview of the methodology and implementation cf. [8] is the
main reference.

Because svm and MART methods do not work in two dimensions, they are
omitted regrading the type 3. In the other methods nnet, mlp, jordan, rbf, elman
we normalized the responses and predictors. For the applying of these methods,
the renormalization procedure should be used. In the MART method the relative
validations of used predictors is additionally computed. We summarize these results
in Table 3. All models were obtained by the cross-validation test.

146 B. Bielecki, A. Krajka

As it is shown, it is not possible to make the “universal” model for all situations
A1-A12, because the differences are too big.

Comparizing the computed fitted values {yi, 1 ≤ i ≤ n} of some method
(lm,nnet,mlp,. . .) with those “exact” obtained from PO model {xi, 1 ≤ i ≤ n}
we can compute the standard deviation error as

SD =

√∑n
i=1(xi − yi)2

n
−
(∑n

i=1(xi − yi)
n

)2
, (4.2)

and summarize these values in Table 4.
Dividing the reservoir values (BHP) on intervals [0, 2500), [2500, 3500), [3500,

4500), [4500,∞) and percentage reldPOIL computed according to reldPOIL =
|dPOIL|
POIL × 100% on intervals (0, 0.05%], (0.05%, 0.1%], (0.1%, 100%] we chose the

best model for each interval. This result is presented on Table 5 (in parentheses
there are standard errors in appropriate intervals).

Table 5 shows the results for different actions related BHP of the algorithm of
steering of gas and oil production described in the next section.

Table 3: Feature importance from MART model for 12 types of simulations denoted
as A1 to A12. For details of the simulations see section 3

Attribute Type
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

POIL 36.35 0.84 0.03 1.03 0.71 0.76 21.00 3.68 2.45 2.60 2.18 3.51
PID1 14.81 17.27 1.78 0.26 0.27 0.30 9.74 27.36 5.64 36.49 0.39 0.51
GLV d1 14.41 0.35 0.00 57.50 20.96 0.57 4.15 0.37 0.66 0.07 0.36 0.14
PIL1 13.81 4.30 0.95 0.39 0.19 0.21 23.56 29.48 3.31 27.37 0.95 0.39
dPOIL 11.96 1.60 88.17 1.24 1.17 3.22 19.80 1.68 4.05 1.95 2.14 1.25
PIV1 5.08 0.00 0.05 0.00 0.00 0.00 14.83 3.01 0.02 0.00 0.00 0.00
PIE1 3.06 2.70 0.00 0.00 0.00 0.00 6.01 2.11 0.00 0.00 0.00 0.00
GLV l1 0.49 5.08 0.38 0.01 0.00 0.01 0.30 11.28 0.71 26.08 0.01 0.01
BHP 0.02 0.02 0.00 0.04 0.05 0.09 0.63 0.29 0.19 0.12 0.11 0.16
PID2 0.00 30.79 2.64 0.34 0.21 0.34 0.00 9.74 27.55 0.37 12.94 0.46
PIL2 0.00 19.14 1.66 0.46 0.40 0.58 0.00 3.53 17.34 0.60 52.31 0.53
PIE2 0.00 9.58 1.16 0.04 0.01 0.25 0.00 2.08 8.85 0.18 17.97 0.04
GLV d2 0.00 5.07 0.17 37.12 41.45 38.71 0.00 0.81 0.24 0.52 0.78 0.38
GLV l2 0.00 3.10 0.77 0.00 0.00 0.00 0.00 0.96 5.57 0.00 0.14 0.00
PIV2 0.00 0.17 2.24 0.02 0.01 0.03 0.00 3.63 23.43 0.08 5.03 0.08
GLV d3 0.00 0.00 0.00 0.58 34.23 53.73 0.00 0.00 0.00 2.38 1.40 0.20
PID3 0.00 0.00 0.00 0.42 0.16 0.53 0.00 0.00 0.00 0.37 1.27 3.22
PIL3 0.00 0.00 0.00 0.36 0.14 0.67 0.00 0.00 0.00 0.51 1.11 17.61
PIV3 0.00 0.00 0.00 0.14 0.02 0.01 0.00 0.00 0.00 0.15 0.56 4.59
PIE3 0.00 0.00 0.00 0.06 0.02 0.01 0.00 0.00 0.00 0.15 0.32 66.91
GLV l3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01

Data Mining Procedures in the Oil Production Prediction for Gas Lifted Wells 147

5 The algorithm
On the web page

http://matrix.umcs.lublin.pl/~akrajka/oilprod
the following files may be found: elman4, elman7, elman8, elman9, elman10,
elman11, elman12, elman16, MART1, MART2, MART3, MART4, MART12, mlp2,
mlp4, mlp5, mlp13, mlp15, mlp17, nnet1, nnet2, nnet3, nnet4, nnet5,
nnet6, nnet10, nnet11, nnet12, nnet14, nnet15, nnet17, svm1, svm4,
svm5, svm6, normalise (normalization and renormalization parameters),
tab5(values from Table 5) and program.r (program in R).

The input data for our algorithm are POIL, newProdOIL, BHP, Situation,
GLVd, GLVl:

• POIL is the actual production of oil,

• newProdOIL as desired oil production,

• BHP as the actual bottomhole pressure,

• Situation as integer numbers 1, 2 or 3 according to the number of connected
GLV (the situations S1, S2, or S3),

Table 4: The standard deviation error (4.2) of all models

Type N lm nnet mlp jordan rbf elman ppr polymars svm MART
depth evaluation

A1 2688 76.01 26.84 44.95 1039.26 79.48 50.02 44.19 47.63 51.88 35.38
A2 18529 240.32 226.38 227.14 229.26 240.02 234.78 229.17 227.99 230.63 227.23
A3 19087 253.03 221.58 222.98 226.20 253.74 232.49 226.41 225.75 228.97 221.54
A4 16992 137.04 131.30 131.45 132.63 139.72 132.13 136.53 132.51 131.08 131.61
A5 17030 139.27 131.13 131.90 231.29 154.60 691.91 138.56 136.18 133.73 135.13
A6 23581 172.61 167.91 170.99 169.90 176.49 169.54 170.25 170.42 168.13 170.66

lift evaluation
A7 4279 0.969 0.902 0.941 1.187 1.015 0.586 0.961 0.936 0.958 0.898
A8 8158 1.072 1.025 1.041 1.014 1.141 0.744 1.055 1.065 1.047 1.031
A9 8299 1.093 1.047 1.068 1.094 1.141 0.865 1.074 1.088 1.072 1.055
A10 12140 0.667 0.653 0.664 0.664 0.692 0.655 0.666 0.667 0.665 0.665
A11 12397 0.666 0.655 0.664 0.676 0.679 0.663 0.665 0.666 0.672 0.671
A12 12077 0.665 0.654 0.663 0.670 0.753 0.658 0.665 0.665 0.674 0.671

depth evaluation
A13 3332 201.59 201.00 201.56 143.36 201.97 256.15 201.36 201.62 −− −−
A14 28615 658.07 446.98 475.00 719.87 653.76 702.95 507.54 517.54 −− −−
A15 17441 192.57 190.95 191.93 198.92 193.16 194.66 192.54 192.63 −− −−
A16 17421 191.89 189.64 190.21 174.81 196.79 140.28 191.87 191.41 −− −−
A17 39437 308.29 287.26 290.64 306.08 307.42 18407.88 302.17 291.26 −− −−

lift evaluation
A13 3332 1.448 1.395 1.411 2.489 1.506 1.483 1.473 1.473 −− −−
A14 28615 1.184 1.182 1.180 1.219 1.186 1.212 1.186 1.184 −− −−
A15 17441 1.127 1.127 1.127 1.232 1.127 1.226 1.127 1.127 −− −−
A16 17421 1.124 1.121 1.124 1.498 1.125 1.132 1.125 1.125 −− −−
A17 39437 1.128 1.128 1.128 1.129 1.129 6.695 1.129 1.129 −− −−

148 B. Bielecki, A. Krajka

Table 5: Set of the chosen models according to the function of BHP and related
dPOIL intervals

zest reldPOIL reservoir BHP
[0, 2500) [2500, 3500) [3500, 4500) [4500,∞)

A1 (0%, 0.05%] nnet(16.2) nnet(44.89) MART (34.) nnet(23.66)
A1 (0.05%, 0.1%] MART (7.98) MART (39.86) svm(10.5) nnet(19.66)
A1 (0.1%, 100%] nnet(12.88) MART (36.16) MART (14.51) MART (21.12)
A2 (0%, 0.05%] nnet(230.15) nnet(202.39) mlp(192.46) nnet(181.99)
A2 (0.05%, 0.1%] MART (198.55) nnet(192.51) nnet(198.55) nnet(200.93)
A2 (0.1%, 100%] nnet(227.08) nnet(232.23) nnet(251.5) MART (251.74)
A3 (0%, 0.05%] MART (213.1) nnet(207.04) nnet(178.57) nnet(168.03)
A3 (0.05%, 0.1%] MART (201.78) MART (202.2) MART (186.74) MART (184.55)
A3 (0.1%, 100%] nnet(225.83) nnet(236.21) MART (238.8) MART (245.29)
A4 (0%, 0.05%] nnet(134.94) MART (139.32) MART (133.87) mlp(130.47)
A4 (0.05%, 0.1%] elman(124.63) svm(129.75) svm(129.19) nnet(130.58)
A4 (0.1%, 100%] svm(130.17) svm(132.16) svm(127.4) svm(129.25)
A5 (0%, 0.05%] svm(124.19) nnet(133.) nnet(132.99) nnet(129.32)
A5 (0.05%, 0.1%] svm(131.11) mlp(134.15) nnet(139.43) mlp(130.89)
A5 (0.1%, 100%] nnet(131.02) nnet(128.06) nnet(129.16) mlp(133.27)
A6 (0%, 0.05%] svm(170.771) svm(172.442) svm(165.024) nnet(168.971)
A6 (0.05%, 0.1%] nnet(162.) svm(171.405) nnet(168.165) svm(170.335)
A6 (0.1%, 100%] nnet(163.984) nnet(167.438) nnet(165.892) nnet(171.7)
A7 (0%, 0.05%] elman(0.407) elman(0.645) elman(0.597) elman(0.983)
A7 (0.05%, 0.1%] elman(0.285) elman(0.698) elman(0.798) elman(0.879)
A7 (0.1%, 100%] elman(0.331) elman(0.488) elman(0.376) elman(0.272)
A8 (0%, 0.05%] elman(0.647) elman(0.684) elman(0.852) elman(0.682)
A8 (0.05%, 0.1%] elman(0.912) elman(0.576) elman(0.743) elman(0.881)
A8 (0.1%, 100%] elman(0.755) elman(0.704) elman(0.715) elman(0.746)
A9 (0%, 0.05%] elman(0.758) elman(0.845) elman(0.914) elman(0.963)
A9 (0.05%, 0.1%] elman(0.729) elman(0.847) elman(0.915) elman(0.884)
A9 (0.1%, 100%] elman(0.808) elman(0.795) elman(0.922) elman(0.71)
A10 (0%, 0.05%] elman(0.661) nnet(0.631) elman(0.665) nnet(0.641)
A10 (0.05%, 0.1%] nnet(0.656) nnet(0.674) elman(0.642) nnet(0.63)
A10 (0.1%, 100%] nnet(0.663) elman(0.637) nnet(0.678) elman(0.628)
A11 (0%, 0.05%] nnet(0.631) elman(0.614) nnet(0.658) elman(0.645)
A11 (0.05%, 0.1%] nnet(0.632) elman(0.629) nnet(0.647) nnet(0.683)
A11 (0.1%, 100%] nnet(0.665) elman(0.651) elman(0.654) elman(0.656)
A12 (0%, 0.05%] nnet(0.635) nnet(0.659) nnet(0.614) nnet(0.629)
A12 (0.05%, 0.1%] nnet(0.648) MART (0.655) nnet(0.657) nnet(0.666)
A12 (0.1%, 100%] nnet(0.657) elman(0.636) elman(0.644) elman(0.697)

A13 (0%, 0.05%] mlp(161.8/1.09) jordan(107.3/1.87) jordan(105.3/2.06) nnet(206.5/1.45)
A13 (0.05%, 0.1%] mlp(193.9/1.43) nnet(203.5/1.46) nnet(194.8/1.41) nnet(196.4/1.3)
A13 (0.1%, 100%] nnet(208.9/1.38) jordan(120.7/2.1) jordan(98.7/1.93) nnet(185.1/1.41)
A14 (0%, 0.05%] nnet(468.2/1.12) nnet(444.1/1.15) nnet(464.9/1.15) nnet(446.4/1.17)
A14 (0.05%, 0.1%] nnet(398.4/1.31) nnet(401.7/1.27) nnet(448.2/1.27) nnet(431./1.17)
A14 (0.1%, 100%] nnet(471.3/1.22) nnet(408.7/1.25) nnet(467.2/1.22) nnet(418./1.15)
A15 (0%, 0.05%] nnet(195.8/1.14) nnet(190.4/1.14) nnet(189.5/1.12) nnet(192.4/1.12)
A15 (0.05%, 0.1%] nnet(189./1.11) nnet(192.5/1.14) nnet(194.1/1.17) nnet(179./1.09)
A15 (0.1%, 100%] nnet(190.6/1.14) nnet(187.6/1.12) nnet(184.8/1.1) mlp(200.5/1.07)
A16 (0%, 0.05%] elman(152.3/1.13) elman(136./1.15) elman(131.9/1.12) elman(134.2/1.11)
A16 (0.05%, 0.1%] elman(146.9/1.15) elman(131.6/1.15) elman(146.8/1.15) elman(132.2/1.11)
A16 (0.1%, 100%] elman(157.4/1.13) elman(137./1.12) elman(136.9/1.11) elman(136.1/1.25)
A17 (0%, 0.05%] nnet(302.2/1.13) nnet(292.9/1.13) nnet(290.2/1.13) nnet(287.2/1.12)
A17 (0.05%, 0.1%] nnet(277.3/1.12) nnet(271.2/1.16) nnet(276.5/1.11) nnet(285.2/1.16)
A17 (0.1%, 100%] nnet(284.2/1.13) nnet(276.3/1.14) nnet(267.8/1.12) mlp(274.9/1.13)

Data Mining Procedures in the Oil Production Prediction for Gas Lifted Wells 149

• GLVd and GLVl are five elements vectors of the depth and lift (complete by
NA value if not exists).

The result is the data frame (named wyn) which contains a few fields. Very first
type as the integer between 1 to 17 represents the number of the possible action
A1-A17. In the another one, fields GLVdx, GLVlx contain new depth, length or
depth, and length value according to the type in the intervals [1, 6], [7, 12], [13, 17]
respectively. Fields errdx and errlx contains information about the “predicted” error,
taken from Table 5.

Parallelly, to the written in R code program program.r, we show below (Algo-
rithm 1) the written in pseudocode main idea of mentioned above program.

Algorithm 1: The algorithm of prediction of change of parameters for
given change of Oil Production
1 /* Set tab5 array */
2 tab5← read.table(tab5);
3 /* Set lmx, lMx, lmy, lMy arrays */
4 readRDS(normalise);
5 /* Set dane data frame */
6 dane1 ← newProdOIL− POIL;
7 dane2 ← BHP ;
8 dane3 ← POIL;
9 for n = 1 to 5 do

10 dane3+n ← GLV dn;
11 dane8+n ← GLV ln;
12 dane13+n ← GLV dn × (1 +GLV ln);
13 dane18+n ← GLV dn × exp(GLV ln);
14 dane23+n ← GLV dn/(1 +GLV ln);
15 dane28+n ← log(GLV dn)/(1 +GLV ln);

16 /* The possible actions A1-A17 depending on the Situation
parameter we compute in wynz whereas in xpred are numbers of
columns of data frame dane which should be used to
prediction */

17 switch Simulation do
18 case 1 do
19 wynz ← {1, 7, 13, 14};
20 xpred← {1, 2, 3, 4, 9, 14, 19, 24, 29};
21 case 2 do
22 wynz ← {2, 3, 8, 9, 15, 16, 17};
23 xpred← {1, 2, 3, 4, 9, 5, 10, 14, 15, 19, 20, 24, 25, 29, 30};
24 case 3 do
25 wynz ← {4, 5, 6, 10, 11, 12};
26 xpred←

{1, 2, 3, 4, 9, 5, 10, 6, 11, 14, 15, 16, 19, 20, 21, 24, 25, 26, 29, 30, 31};

27 /* For each type in wynz make prediction and write result */
28 twyn← 1;

150 B. Bielecki, A. Krajka

29 /* Prepare pred and pred1 */
30 pj ← 1;
31 for j ∈ xpred do
32 predpj ← danej ;
33 pred1pj ← (predpj − lmxe,j)/(lMxe,j − lmxe,j);
34 pj ← pj + 1

35 /* Find and read method */
36 reldPOIL← abs(newProdOIL/POIL− 1);
37 switch reldPOIL do
38 case reldPOIL < 0.05 do nrel← 1;
39 case reldPOIL ≥ 0.05 and reldPOIL < 0.1 do nrel← 2;
40 case reldPOIL ≥ 0.1 do nrel← 3;

41 switch BHP do
42 case BHP < 2500 do nres← 1;
43 case BHP ≥ 2500 and BHP < 3500 do nres← 2;
44 case BHP ≥ 3500 and BHP < 4500 do nres← 3;
45 case BHP ≥ 4500 do nres← 4;

46 /* Set model from tab5 */
47 model_name← tab53∗(e−1)+nrel,nres;
48 model_name3← substr(model_name, 1, 3);
49 err1← tab53∗(e−1)+nrel,nres+4;
50 err2← tab53∗(e−1)+nrel,nres+8;
51 /* Read model from disk and predict */
52 model← readRDS(model_name);
53 if model_name3 ∈ {”nne”, ”elm”, ”mlp”} then
54 wynx← predict(model, pred1) ∗ (lMy[1]− lmy[1]) + lmy[1]

55 else
56 wynx← predict(model, pred)

57 wyntwyn,1 ← e;
58 wyntwyn,4 ← err1;
59 wyntwyn,5 ← err2;
60 switch e do
61 case e < 7 do
62 wyntwyn,2 ← wynx;
63 wyntwyn,3 ← NA;

64 case e ≥ 7and e < 13 do
65 wyntwyn,2 ← NA ;
66 wyntwyn,3 ← wynx ;

67 case e ≥ 13 do
68 wyntwyn,2 ← wynx1;
69 wyntwyn,3 ← wynx2;

70 twyn← twyn+ 1;

Data Mining Procedures in the Oil Production Prediction for Gas Lifted Wells 151

6 The conclusions
We studied different data mining models to achieve the expected production

results. The presented algorithms are so far different than the typical wellbore
simulators and employed in open libraries. Based on our research we conclude:

1. GLV depths values (GLV di, i = 1, 2, 3) has the significant influence on the
final results PIDi, i = 1, 2 as it is expected. Different injection changes PILi

and PIDi, i = 1, 2 values. There are not equality validation parameters for
all situations. Situations are essentially different.

2. The worst standard error was obtained in situations A13 − A17, because
changes are more significant. Some evaluations of standard deviation errors
eliminate used methods. In some cases, the difference seems to be small (on
example A6) but if we look on the number of considered cases N there are
still meaningful.

3. For the situations A7 − A12 the elman networks are essentially preferred.
For cases A1 − A6 nnet and MART methods are promising. For situations
A13−A17 all type of networks returns satisfactory results. It is impossible to
choose the global method that meets the criteria for all actions. It concludes
to further investigations in this direction.

4. Error in Table 5 is not very small, but once we analyse the vector of error
values, the analysis is failed by the rare output values. It should be analysed
in the next paper.

References
[1] Bennett, K. P. and Campbell, C. (2000). Support vector machines:

hype or hallelujah? ACM SIGKDD explorations newsletter, 2(2), 1-13.
http://www.acm.org/sigs/sigkdd/ explorations/issue2-2/bennett.pdf.

[2] Biecek P. (2017). Przewodnik po pakiecie R, Oficyna Wydawnicza “GIS”.

[3] Bielecki, B. and Krajka, A. (2015). The framework dedicated to three
phase flows wellbore modelling,Mathematical Problems in Engineering, 2015,
(http://dx.doi.org/10.1155/2015/183982)

[4] Bielecki, B., Ksieżopolski, B., Krajka, A. and Wierzbicki, A. (2014). The Con-
cept and Security Analysis of Wireless Sensor Network for Gas Lift in Oil-
wells. Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica,
14(2).

[5] Chang, C. C. and Lin, C. J. (2012). LIBSVM: a library for support vector ma-
chines, 2001. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm,
detailed documentation (algorithms, formulae, . . .) can be found in http:
//www.csie.ntu.edu.tw/ cjlin/papers/libsvm.ps.gz

[6] Electronical textbook: http://www.statsoft.com/textbook/

152 B. Bielecki, A. Krajka

[7] Fausett L., Fundamentals of Neural Networks. New York: Prentice Hall. 1994.

[8] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting
machine. Annals of statistics, 1189-1232.

[9] Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals
of statistics, 1-67.

[10] Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal
of the American statistical Association, 76(376), 817-823.

[11] Haykin, S. and Network, N. (2004). A comprehensive foundation. Neural net-
works, 2(2004), 41.

[12] The home page of language R: http://cran.r-project.org/ .

[13] Kooperberg, C., Bose, S. and Stone, C. J. (1997). Polychotomous regression.
Journal of the American Statistical Association, 92(437), 117-127.

[14] Nisbet R., Elder J., and Miner, G., Handbook of Statistical Analysis and Data
Mining Applications. Burlington, MA: Academic Press (Elsevier) 2009.

[15] Patterson D., Artificial Neural Networks. Singapore: Prentice Hall 1996.

[16] Pourafshary, P. (2007). A coupled wellbore/reservoir simulator to model mul-
tiphase flow and temperature distribution. The University of Texas at Austin.

[17] Ripley B. D., Pattern Recognition and Neural Networks. Cambridge Univer-
sity Press 1996.

[18] Saepudin, D., Sukarno, P., Soewono, E., Sidarto, K. A., Yodi, A., Gunawan, S.
S. and Budicakrayana, Y. (2008). Optimization of gas injection allocation in
multi gas lift wells system. In Sl]: Proceedings of the International Conference
on Engineering Optimization.

[19] Shirdel M., Development of a Coupled Wellbore — Reservoir Compositional
Simulator for Damage Prediction and Remediation. Dissertation Presented to
the Faculty of the Graduate School of The University of Texas at Austin in
Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy.
The University of Texas at Austin. August 2013

[20] Statistics in R, http://zoonek2.free.fr/UNIX/48_R/all.html

[21] Stone, C. J., Hansen, M., Kooperberg, C. and Truong, Y. K. (1994). The
use of polynomial splines and their tensor products in multivariate function
estimation (with discussion. In Ann. Statist.)

[22] Takacs G. (2005). Gas Lift Manual, PennWell Books.

[23] Venables, W. N. and Ripley, B. D., Modern Applied Statistics with S. Fourth
edition. Springer 2002.

[24] Walesiak M. and Gatnar E., Statystyczna analiza danych z wykorzystaniem
programu R, Warszawa 2009, Wydaw. Nauk. PWN SA.

Data Mining Procedures in the Oil Production Prediction for Gas Lifted Wells 153

[25] Zell, A. (1994). Simulation neuronaler netze (Vol. 1, No. 5.3). Bonn: Addison-
Wesley. (in German)

[26] Zell, A. et al. (1998), SNNS Stuttgart Neural Network Simulator User Manual,
Version 4.2, Institute for Parallel and Distributed High Performance Systems,
Technical Report, 1995, 6/95. (http://www.ra.cs.uni-tuebingen.de/SNNS/)

Spatial Databases and Their Use in
Spatial Web Applications Based on
the Exemplary Internet Service for
Same Chosen Objects in the Old
City in Zamość

Joannna Potiopa
Paweł Wiśniewski
Beata Bylina∗

1 Introduction

Spatial data (e.g. satellite pictures) are a valuable source of information in
numerous fields. Each object on the Earth possesses spatial information which can
be utilized in making different decisions [10]. Simplicity in obtaining geographical
data causes the increasing demand for Internet applications rendering accessible
and projecting spatial information [14]. Nowadays it is common to publish two-
dimensional or three-dimensional maps on the websites. Especially development
of the local infrastructure of the spatial data is not only advantageous for local
communities but plays an important national role (e.g. in tourism) [9].

The spatial data saved in the file GeoJSON can be displayed on an Internet map
by means of the JavaScript open-source library such as Leaflet or OpenLayers or by
means of Google Maps API (Application Programming Interface). Data processing
can be done on the client’s computer by means of the library JavaScript Turf.js.
However, if there is a need for making changes in the data or going over the changes
made by others in real time, the data should be stored in the database on the server
[7, 8].

At present in many systems managing data including the open-source ones,
there are available spatial components that allow storing the information about the
objects location e.g PostGIS in PostgreSQL, MySQL Spatial, SpatiaLite for SQLite.
Development of programming languages and appearance of new technologies cause
that the creators of Internet applications do not need to know the language SQL

∗Corresponding author — beata.bylina@umcs.pl

155

156 J. Potiopa, P. Wiśniewski, B. Bylina

(Structured Query Language) to manage the data collected in the database. This
is possible due to the object-relational mapping (ORM).

The paper presents an outline of the implementation of Internet service for
management and presentation of the spatial data based on the exemplary Old
City in Zamość. We will focus mainly on the application back-end where Python
will be used as the language for creating the server-side scripts. As a support for
the web application creation, we will make use of the framework Flask which is
characterized by limited functionality in itself but ensures a very flexible environ-
ment for individual creation of dynamic Internet websites. The data will be stored
in the database PostgreSQL with its spatial extension PostGIS. Additionally, the
mechanism ORM will be used for setting up the database and manipulating the
data.

Chapter two discusses the technologies used in the service creation process.
Chapter three presents a shortened description of application back-end building.
The paper ends with a brief summary.

2 Methodology

2.1 Database

Since the 60s of the last century, databases have constituted an essential element
of most computer science systems. For ages, technological progress has resulted in
inventing new applications for database systems and creating their new types.

2.2 Relational databases

The conception of the relational database was introduced by Edgar Frank Codd
[5] who considered the existing hierarchical and network data model to be primitive
for the creation of effective applications. His model was based on reliable mathe-
matical principles: conception of mathematical relation, theory of sets, first order
logic, and predicates calculus. The combination of precision and simplicity of this
model caused that since that time the relational model has been implemented in
a huge number of database systems. At present, the most common [1] commercial
database management systems (DBMS) are: Oracle1 (Oracle firm), DB22 (IBM
firm), SQL Server3, and Access4 (Microsoft firm). Moreover, there are available
systems of the open access to the source code: MySQL5, PostreSQL6 and SQLite7.

At first mainly text data were stored in the relational database. The basic
types of data include numerical types, strings, bit sequences, logical values, date
and time. At present, there can be stored many other types of data: documents,
images, voice, video.

1https://www.oracle.com/database/
2https://www.ibm.com/analytics/db2
3https://www.microsoft.com/en-us/sql-server/
4https://www.microsoft.com/en-us/microsoft-365/access
5https://www.mysql.com/
6https://www.postgresql.org/
7https://www.sqlite.org/index.html

https://www.oracle.com/database/
https://www.ibm.com/analytics/db2
https://www.microsoft.com/en-us/sql-server/
https://www.microsoft.com/en-us/microsoft-365/access
https://www.mysql.com/
https://www.postgresql.org/
https://www.sqlite.org/index.html

Spatial Databases and Their Use in Spatial Web Applications Based on the Exemplary. . . 157

2.3 Spatial databases

The development of computer science technologies as well as measurement tools
forced the need for storing and processing spatial data. The programs dedicated to
the geographical information systems (GIS) such as ArcGIS8, QGIS9, Saga GIS10

can operate independently main tasks including introduction, verification, storage,
analysis, and visualization of such data. However, due to Internet development, it
is necessary to store the information about the objects, which are described by the
characteristics related to the spatial location in the relational databases. In order
to accomplish this, there appeared the extensions such as Oracle Spatial11, Spatial
SQL Server12, PostGIS13 (PostgreSQL), SpatiaLite14 (SQLite) in the DBMS. They
include the dedicated types of data for spatial information storage, spatial SQL
queries, and spatial indices [13].

2.4 PostreSQL/PostGIS

PostgreSQL is an object-relational database management system (ORDBMS),
it works under numerous operating systems (Linux, Windows, FreeBSD, Solaris,
Mac OS X). This is the open-source type software comparable with the commercial
one such as Oracle or DB2 [11].

PostGIS is an extension of the system PosgreSQL which enables storage of
geographical objects in the database, it renders accessible spatial types, indices,
and functions. This software is consistent with the specification „OpenGIS Simple
Features” given by Open Geospatial Consortium15 (OGC) which is the international
standard of contents and geospatial services organization [6]. Standard SFSQL
defines the relationship between the geometries such as intersection, sum, difference,
symmetric difference.

PostGIS includes the geometry type data consistent with OGC which can be
seen in Fig. 1. The spatial data types are organized into the type hierarchy. Each
subtype inherits the structure (attributes) and behavior (methods and function) of
its supertype.

If we want to place a spatial object in the database we have to give additionally
the number SRID (Spatial Referencing System Identifier) which identifies explicitly
the coordinate system (Spatial Referencing System, SRS). For the system WGS84
SRID = 4326. SDRID = −1 indicates that the coordinate system is not defined.

8https://www.arcgis.com/index.html
9https://qgis.org/pl/site/

10http://www.saga-gis.org/en/index.html
11https://www.oracle.com/database/spatial/
12https://docs.microsoft.com/pl-pl/sql/relational-databases/spatial/

spatial-data-sql-server?view=sql-server-ver15
13https://postgis.net/
14https://www.gaia-gis.it/fossil/libspatialite/index
15http://www.opengeospatial.org/

https://www.arcgis.com/index.html
https://qgis.org/pl/site/
http://www.saga-gis.org/en/index.html
https://www.oracle.com/database/spatial/
https://docs.microsoft.com/pl-pl/sql/relational-databases/spatial/spatial-data-sql-server?view=sql-server-ver15
https://docs.microsoft.com/pl-pl/sql/relational-databases/spatial/spatial-data-sql-server?view=sql-server-ver15
https://postgis.net/
https://www.gaia-gis.it/fossil/libspatialite/index
http://www.opengeospatial.org/

158 J. Potiopa, P. Wiśniewski, B. Bylina

Figure 1: Spatial types of data in PostGIS [2]

2.5 Python

Python 16 is the interpreted high-level general-purpose programming language
operating on various platforms (Windows, Mac, Linux, Raspberry Pi, etc.). It has
a simple syntax similar to the English language. It allows writing shorter programs
than using other programming languages. Its characteristic feature is the use of
indentations for separating blocks of code. Python accomplishes many paradigms
of programming. It can be used as a structured, object-oriented, or functional
language. It is flexible as it offers many functionalities by means of modules.

2.6 Flask

Python as a universal language is not adjusted to creating websites. As it pro-
vides a few frameworks for building Internet applications 17, it can be used for
writing efficient website applications operating on the server side (that is back-
end) [4]. Flask [12] is one of the micro-frameworks which allows combining some
chosen Python libraries owing to which it is flexible and customizable. As it is only
slightly dependent on the external libraries, it is possible to decide how to build an
application by choosing suitable extensions.

2.7 Peewee

For many years the traditional way of communication with the servers of re-
lational databases was the language SQL (Structured Query Language) and its
knowledge is indispensable to make use of all possibilities of the databases. However,
in many projects, the databases can be operated by means of the ORM (Object-
Relational Mapping) [3]. ORM is a programming technique mapping the objects
of a given programming language on the structure of the relational database. Us-
ing tables in an object-oriented way is more convenient in building the application

16https://www.python.org/
17https://www.jetbrains.com/lp/python-developers-survey-2020/#FrameworksLibraries

https://www.python.org/
https://www.jetbrains.com/lp/python-developers-survey-2020/#FrameworksLibraries

Spatial Databases and Their Use in Spatial Web Applications Based on the Exemplary. . . 159

logic. The programmer can write a code e.g. in the Python language instead of
queries in SQL for creating, reading, updating, and deleting data and diagrams in
the database.

Peewee18 is one of the simple and small ORM systems written in Python. It
allows operating on the database in a simple way without SQL and knowledge of
its specificity.

3 Results
We will present a simple project of Internet service for the presentation of

spatial data combining a few different open-source technologies. The objects in the
Old City in Zamość will be used as an example of data. In the service creation,
there were considered the two assumptions: rendering complex management of the
geographical data possible in the form of pointwise objects from the application
level as well as their presentation on the map.

In order to enable modification of the data maintaining the possibility of intro-
duced data verification, the users’ accounts system was implemented. This allows
adjusting the application functionality to the user’s permissions. In order to use
the service, one should register in it. The registered user is able to view the data
but after being given the appropriate rights by the administrator he is able to edit
the data and administer the service. The view of the application home page for the
user with the edition and administration rights is presented in Figure 2.

Figure 2: Application home page for the user with editing and administration rights

The main task of the objects presentations on the map is accomplished by
rendering the map panel possible for the data display according to their assignment
to the corresponding subcategories grouped into categories. The logged-in person
can view the geographical objects in the database according to the categories (e.g.
touristic objects, shops, restaurants, etc.) and subcategories (more detailed division

18http://docs.peewee-orm.com/en/latest/

http://docs.peewee-orm.com/en/latest/

160 J. Potiopa, P. Wiśniewski, B. Bylina

of the objects from a given category e.g in the category shops, there are, among
others, bookshops, chemist’s, grocer’s, confectioner’s, etc.) on the home page. Each
subcategory possesses its own display style on the map and the application enables
display of any number of objects group at the same time as can be seen in Figure
3. The user can also display the object characteristics such as: name, description,
category, subcategory as well as the author by clicking on the chosen point on the
map. The user with granted suitable rights can edit these data. Some of them can
also administer the users and their privileges.

Figure 3: Map with visible objects belonging to chosen subcategories

The edition panel allows editing, deleting and creating new categories, subcate-
gories and objects. Figure 4 shows the most extended form of new object addition.
The website adding a new object is composed of a map on which one can indicate
the point position and a form which can be completed with the values of indi-
vidual object attributes. The object geometry can be given by entering the point
coordinates in the format x, y in the form or indicating it on the map.

The application was assumed to store not only the data about users but mainly
the information about geographical objects. Therefore the relational database Post-
greSQL along with its spatial extension PostGIS was used.

The application under consideration is to make use of the database of not
very complicated structure and programmed in the object-oriented language. Thus
management of the database can be accomplished by means of the Peewee system
— the simple and small ORM system written in the Python language. Utilization
of the ORM system must be composed of three stages:

• making a connection to the database

• declaration of the model describing the base and creation of database struc-
ture

• performing the database operation

Spatial Databases and Their Use in Spatial Web Applications Based on the Exemplary. . . 161

Figure 4: Addition of a new object

The conception of object-relational mapping consists in the creation of suitable
tables, columns in the database taking into account their types and connections
based in the classes written in the object-oriented language. Inheriting from a
suitable base class, we declare the classes representing the tables in the database in
the file models.py and the properties of the classes correspond to the columns in
the tables. As an example the code of the model (taken as a class and its properties)
of the class defining the table points is shown in Listing 1:

Code Listing 1: Exemplary class model

from peewee import PostgresqlDatabase , Model ,
PrimaryKeyField , TextField , DateTimeField ,
ForeignKeyField , Fie ld , fn

c l a s s Po intF ie ld (F i e ld) :
db_f ie ld = ’ geometry ’

de f db_value (s e l f , va lue) :
formatted_value = value . r ep l a c e (" , " , "␣")
re turn fn . St_PointFromText (’POINT({}) ’ . format (

formatted_value) , 4326)

de f python_value (s e l f , va lue) :
r e s = database . execute_sql (" s e l e c t ␣st_x (’ {} ’) , ␣st_y

(’ { } ’) " . format (value , va lue))
re turn r e s . f e t chone ()

database = Postgresq lDatabase (None)

162 J. Potiopa, P. Wiśniewski, B. Bylina

c l a s s AbstractModel (Model) :
c l a s s Meta :

database = database

c l a s s Points (AbstractModel) :
id = PrimaryKeyField ()
name = TextFie ld (unique=True , nu l l=Fal se)
d e s c r i p t i o n = TextFie ld (nu l l=True)
connect ion = ForeignKeyField (Connections)
geometry = PointF ie ld ()
user = ForeignKeyField (Users)

c l a s s Meta :
db_table = ’ po in t s ’

The class Field() is used for indicating the type of data to be stored in the col-
umn. Each type of field has a corresponding type of data in the database. The field
TextField() is used for the text storage, by means of the field PrimaryKeyField()
it is possible to determine which field will be a primary key. We can also define the
additional features of field such as e.g. permission for null values (null = False) or
unique values (unique = True). The relationships between tables are given making
use of the field of the type ForeignKeyField (the name of the related class)
related-class-name. The class Points possesses also the field geometry for the
object location storage by means of the earlier created type PointField().

The systems ORM including the exemplary Peewee create corresponding tables,
columns with their types and relationships in the database based on the classes.
The schema of the database in our application, made in the DBeaver19 software is
presented in Figure 5.

The database is composed of five related tables: users, points, connections, cat-
egories, subcategories as well as tables logs and spatial_ref_sys. The tables users
stores the users’ data together with their permissions, the tables categories and
subcategories store the information about possible objects categories and subcat-
egories, respectively, and the table connections connects categories and subcate-
gories. In the table points, the information about the objects added to the database
is stored. The name of the objects, its category, information about the user who
made the object modification as the last one as well as the point location on the
map given as type point are saved. Diagram 5 shows the table spatial_ref_sys —
this is a special table of metadata defined in PostGIS in which the codes identifying
each coordinate system specified by OGC are stored. It is created automatically
by ORM. There was also made the table logs which stores the information about
activities taking place in the Internet service.

19DBeaver (https://dbeaver.io/) — Free multi-platform database tool for developers,
database administrators, analysts, and all people who need to work with databases. Supports
all popular databases: MySQL, PostgreSQL, SQLite, Oracle, DB2, SQL Server, Sybase, MS Ac-
cess, etc.

https://dbeaver.io/

Spatial Databases and Their Use in Spatial Web Applications Based on the Exemplary. . . 163

Figure 5: The database schema

It is possible to make operations CRUD (C — Create, R — Read, U — Up-
date, D — Delete) using the created database. The basic operations made on the
database, e.g. inserting or reading the data are performed in Peewee by means of
the object representing the defined tables as well as their methods:

• Model.create() — the method allowing insertion of a new row into the
database (equivalent insert in SQL)

• Model.update() — allows modifying the data in the existing row (equivalent
update in SQL)

• Model.delete() — enables deletion of the row (equivalent delete in SQL)

• Model.get() — returns a single record matching the query (equivalent
select with a condition)

Calling these methods as arguments one should give the data corresponding
to the fields in the table. The example of the insertion of a new point into the
database exploiting the data obtained from the form completed by the user in the
application is given in Listing 2.

Code Listing 2: Insertion of a new point

ob ta in ing in format ion about the subca tegory o f a po in t
connect ion_id = Connections . get (Connections . subcategory ==

reques t . form [’ subcategory ’]) . id
ob ta in ing in format ion about the data o f the user

i n s e r t i n g an o b j e c t
user = Users . get (Users . name == s e s s i o n . get (’ l o g i n ’)) . id

164 J. Potiopa, P. Wiśniewski, B. Bylina

adding a new o b j e c t to the database
po int = Points . c r e a t e (name=reques t . form [’name ’] ,

d e s c r i p t i o n=reques t . form [’ d e s c r i p t i o n ’] , connect ion=
connection_id , geometry=reques t . form [’ geometry ’] , user=
user)

4 Conclusion
The paper shows that the web-GIS application does not need to use the spa-

tial data only in a static way (e.g. displaying the location of the objects saved in
the GeoJSON file). Introducing the relational database PostgreSQL with the pos-
sibility of spatial data storage thanks to PostGIS, the service renders the user the
possibility of data edition. Owing to that all changes made in the databases are
visible immediately for other users. It was also pointed out that Python can be
an excellent choice as the application back-end as a result of the Flask framework
exploitation. Additionally, it became possible to manage the spatial database not
entering into details of the language SQL but in the Python language by means of
ORM.

Contrary to the applications made in the dedicated GIS software, Internet ap-
plication visualizing spatial data offers more advantages such as independence of
the platform, user-friendliness, and common access. Moreover, owing to the use of
open-source technology creation of such applications does not require any expendi-
ture of money for software purchase. It was possible to create the application which
cooperates with advanced database management systems and offers the user the
dynamic Internet website for editing also spatial data. In the future, the application
can be developed by the possibility of searching objects in a definite distance from
the given location based on the spatial queries.

References
[1] Db-engines ranking. https://db-engines.com/en/ranking. Accessed: 2021-

05-30.

[2] Introduction to PostGIS. https://postgis.net/workshops/
postgis-intro/.

[3] Scott Ambler. Mapping Objects to Relational Databases: O/R Mapping In
Detail, 01 2006.

[4] Fankar Aslam, Hawa Mohammed, and Prashant Lokhande. Efficient Way Of
Web Development Using Python And Flask. International Journal of Ad-
vanced Research in Computer Science, 6, 01 2015.

[5] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Com-
mun. ACM, 13(6):377–387, June 1970.

[6] Open Geospatial Consortium. Simple Features SQL. https://www.ogc.org/
standards/sfs.

https://db-engines.com/en/ranking
https://postgis.net/workshops/postgis-intro/
https://postgis.net/workshops/postgis-intro/
https://www.ogc.org/standards/sfs
https://www.ogc.org/standards/sfs

Spatial Databases and Their Use in Spatial Web Applications Based on the Exemplary. . . 165

[7] Paul Lewis, Conor Mc Elhinney, and Timothy Mccarthy. LiDAR Data Man-
agement Pipeline; from Spatial Database Population to Web-Application Vi-
sualization. 07 2012.

[8] L.M. Mamai, M. Gachari, and G. Makokha. Developing a Web-Based Wa-
ter Distribution Geospatial Information System for Nairobi Northern Region.
Journal of Geographic Information System, 9:34–46, 2017.

[9] Slaven Marasovic and Željko Hećimović. Open Source Software and Local
Spatial Data Infrastructure. 09 2014.

[10] Riccardo Mari, Lorenzo Bottai, Caterina Busillo, Francesca Calastrini,
Bernardo Gozzini, and Giovanni Gualtieri. A GIS-based interactive web de-
cision support system for planning wind farms in Tuscany (Italy). Renewable
Energy, 36(2):754–763, 2011.

[11] Pedro Martins, Paulo Tomé, Cristina Wanzeller, Filipe Sá, and Maryam Ab-
basi. Comparing Oracle and PostgreSQL, Performance and Optimization.
In Álvaro Rocha, Hojjat Adeli, Gintautas Dzemyda, Fernando Moreira, and
Ana Maria Ramalho Correia, editors, Trends and Applications in Information
Systems and Technologies, pages 481–490, Cham, 2021. Springer International
Publishing.

[12] Kunal Relan. Beginning with Flask, pages 1–26. 09 2019.

[13] Grace Samson, Zhongyu Lu, Mistura Usman, and Qiang Xu. Spatial
Databases: An overview, pages 111–149. IGI Global, United States, Febru-
ary 2017.

[14] Sunil Singh and Preetvanti Singh. Mapping Spatial Data on the Web Us-
ing Free and Open-Source Tools: A Prototype Implementation. Journal of
Geographic Information System, 6, 11 2013.

Nested Loop Transformations on
Multi- and Many-Core Computers
With Shared Memory

Beata Bylina
Jarosław Bylina∗

1 Introduction

Nested loops are an important structure bearing a great deal of the parallelism
possibilities. However, to parallelize them efficiently, the programmer has to make
some decisions about applying various strategies to enable proper parallelization,
vectorization, and the cache utilization. An example of such loops are matrix al-
gorithms, like the matrix multiplication or different kinds of factorizations, widely
investigated in the literature [4, 5].

In the work [2] we studied four parallelizing strategies for nested loops on multi-
core architectures on the example of a factorization similar to the LU factorization,
namely, the WZ factorization [7, 6, 8]. The WZ factorization has some nontrivial
data dependencies and the compiler is not able to efficiently optimize the algorithm.
We used four parallelism strategies for nested loops (dubbed in that article: outer,
inner, nested, and split). For random dense square matrices with the dominant
diagonal, we reported the execution time, the performance, the speedup of the WZ
factorization for these four strategies of parallelizing nested loops and we investi-
gated the accuracy of such solutions. The outer and split approaches achieved the
best speedup. In [3] we evaluated these two strategies on Intel Xeon Phi 7120P.

In this work, we want to compare the behavior of selected strategies on CPU and
on MIC and investigate some other loop transformations. The loop transformations
can improve the speed of the algorithm by reducing loops’ costs which can lead to
better utilization of contemporary architectures. They play an important role in
cache efficiency improvement, better vectorization, better parallel processing. Some
common examples of loop transformations are (among others) loop interchange,
strip-mining, loop tiling.

The contribution of this work is: investigating and comparison of nested loops
on CPU and MIC; investigating two algorithms of different granularity; studying
influence of vectorization, scheduling, memory layout, loop order, loop tiling — all

∗Corresponding author — jaroslaw.bylina@umcs.pl

167

168 B. Bylina, J. Bylina

Figure 1: The output of the WZ factorization — forms of the matrices W (left)
and Z (right)

of which can be significant and crucial.
The remainder of the paper is following. Section 2 presents the outline of the

algorithm being a basis for tests, namely the WZ factorization. Section 3 describes
variations of the algorithm which are investigated — and some analysis. In Section
4, we show how the tests have been made (environment, compiler, matrices). Section
5 describes details and results of experiments. Section 6 concludes the paper.

2 WZ factorization

We would like to present shortly the WZ factorization [7, 6, 8] which we chose
here because of its quite complicated nesting of loops as well as parallel potential.

The matrix factorization is a manner to reduce a matrix to a product of two
(or more) matrices of a simpler form. It is mainly used as an auxiliary operation
for solving linear systems — after the factorization, we can solve more systems but
their matrices are much more easy to operate than the initial one.

By the WZ factorization, we transform a square and nonsingular matrix A into
a product of two matrices, namely WZ. The matrix W is a matrix of the form of
a butterfly with units on its main diagonal, the matrix Z is a matrix of the form
of an hourglass. Both the matrices are complements of each other in the sense of
the structure of non-trivial elements (one has non-trivial elements in places where
the other has zeros/units — and vice versa).

The forms of these matrices can be seen in Figure 1.
Prior to the start of the algorithm, the array a contains the matrix A which is

about to be factorized. After the execution of this algorithm, we will obtain two
arrays: the array w containing non-trivial elements of the W matrix (gray in Figure
1) and the array a containing non-trivial elements of the Z matrix (also gray in
Figure 1).

Figure 2 presents a basic algorithm for the WZ factorization for an even size of
the matrix (we only consider even sizes — without loss of generality).

Nested Loop Transformations on Multi- and Many-Core Computers With Shared Memory 169

for(k = 0; k < n/2-1; k++) {
// the following four lines are omitted
// in the next versions of the algorithms
// (thay are always the same)
p = n-k-1;
akk = a[k][k]; akp = a[k][p];
apk = a[p][k]; app = a[p][p];
detinv = 1 / (apk*akp - akk*app);
for(i = k+1; i < p; i++) {

w[i][k] = (apk*a[i][p] - app*a[i][k])
* detinv;

w[i][p] = (akp*a[i][k] - akk*a[i][p])
* detinv;

for(j = k+1; j < p; j++)
a[i][j] = a[i][j]

- w[i][k]*a[k][j]
- w[i][p]*a[p][j];

}
}

Figure 2: The basic algorithm for the WZ factorization — pseudocode

We have three nested loops. The outermost loop (the k-loop) iterates over the
number of steps. This number is half the size of the matrix minus 1 (that is, n

2 −1).
The kth iteration depends on the k − 1st iteration (except for k = 0).

The middle loop (the i-loop) is an inner loop (for k-loop) and an outer loop (for
j-loop) at the same time. It computes elements of the matrix W in every iteration.
Then, it executed the third loop. The innermost loop (the j-loop) updates the
matrix A. Both the inner loops (the i- and j-loops) have n− 2k iterations.

3 Algorithms and implementations

3.1 Sequential algorithms and loop interchange

The matrices A which we consider are dense ones. They are stored in two
formats — a column-wise and row-wise manner. These are traditional schemes
(layouts) for keeping dense matrices in the computer memory — known also from
many standards and libraries — like BLAS [9], LAPACK [1], MKL [10], and others.

The loops’ nesting order can be changed. This operation is known as loop inter-
change (loop permutation) and it can be done if it does not cause any changes
in the computation results (that is, when there are no unsettled dependencies —
or, in other words, all the dependencies are solved).

This is the issue with our original algorithm (Figure 2). There, we can exchange
the i-loop with the j-loop with no changes to the results. However, in that algo-
rithm, the inner loop (j-loop) is not the only instruction in the body of the outer
loop (i-loop), so the interchange brings a lot of work duplication and thus is im-
practical — although, after the outer loop fission (see below), it becomes possible.

170 B. Bylina, J. Bylina

for(k = 0; k < n/2-1; k++) {
. . .
for(i = k+1; i < p; i++) {

w[i][k] = (apk*a[i][p] - app*a[i][k])
* detinv;

w[i][p] = (akp*a[i][k] - akk*a[i][p])
* detinv;

}
for(i = k+1; i < p; i++)

for(j = k+1; j < p; j++)
a[i][j] = a[i][j]

- w[i][k]*a[k][j]
- w[i][p]*a[p][j];

}

Figure 3: The algorithm after the fission of the i-loop — pseudocode. This algo-
rithm matches the row-wise layout

To avert this duplication, we utilize an additional optimization technique on
the i-loop — known as the loop fission (also called loop distribution).

Its result is shown in Figure 3.

3.2 Parallelization and vectorization

Next steps of optimization are vectorization and parallelization. Both the ver-
sions (the original one, Figure 2, and the fission one, Figure 3) have some potential
for parallelization because they contain mainly loops.

These algorithms can be also vectorized with the use of #pragma simd or the
simd clause in #pragma omp parallel for. The places to put them were investi-
gated experimentally on multicore and manycore platforms in the above-mentioned
papers [2, 3] and the best one was chosen. Moreover, removing simd clauses alto-
gether causes a great performance drop (especially in fission algorithm).

Figure 4 shows the pseudocode of the parallelized and vectorized basic ver-
sion. Figure 5 presents the pseudocode of the parallelized and vectorized fission
algorithm. In the original algorithm (Figure 4), the i-loop is parallelized and the
j-loop is vectorized.

3.3 Strip-mining and loop tiling

A loop in the process of strip-mining is divided into two loops, where the inner
one has BLOCK_SIZE iterations and the outer one has n/BLOCK_SIZE iterations (n
is the number of iterations in the original loop). The strip-mining alone can have
some positive impact on the performance (by easing the automatic vectorization
process).

In Figures 6 and 7, we use the compiler clause __assume which tells the compiler
that a given condition is fulfilled — here, we declare that ii and jj are multiples
of the BLOCK_SIZE — which facilitates the vectorization.

Nested Loop Transformations on Multi- and Many-Core Computers With Shared Memory 171

for(k = 0; k < n/2-1; k++) {
. . .

#pragma omp parallel for
for(i = k+1; i < p; i++) {

w[i][k] = (apk*a[i][p] - app*a[i][k])
* detinv;

w[i][p] = (akp*a[i][k] - akk*a[i][p])
* detinv;

#pragma simd
for(j = k+1; j < p; j++)

a[i][j] = a[i][j]
- w[i][k]*a[k][j]
- w[i][p]*a[p][j];

}
}

Figure 4: The parallelized and vectorized version of the basic algorithm — pseu-
docode

for(k = 0; k < n/2-1; k++) {
. . .

#pragma omp parallel for simd
for(i = k+1; i < p; i++) {

w[i][k] = (apk*a[i][p] - app*a[i][k])
* detinv;

w[i][p] = (akp*a[i][k] - akk*a[i][p])
* detinv;

}
#pragma omp parallel for

for(i = k+1; i < p; i++)
#pragma simd

for(j = k+1; j < p; j++)
a[i][j] = a[i][j]

- w[i][k]*a[k][j]
- w[i][p]*a[p][j];

}

Figure 5: The parallelized and vectorized version of the fission algorithm — pseu-
docode

4 Testing methodology
Our testing machine consists of two CPUs and a MIC. The detailed parameters

of the environment are shown in Table 1.
The language of the implementation was C++. The floating-point numbers were

in double precision (the double type in C++). All the programs were compiled with
the following compiler options:

• -qopenmp — it enables the compiler to generate multi-threaded code with

172 B. Bylina, J. Bylina

for(k = 0; k < n/2-1; k++) {
. . .

#pragma omp parallel for
for(i = k+1; i < p; i++) {

w[i][k] = (apk*a[i][p] - app*a[i][k])
* detinv;

w[i][p] = (akp*a[i][k] - akk*a[i][p])
* detinv;

start = RDTTNM(k+1, BLOCK_SIZE);
for(jj = start; jj < p;

jj += BLOCK_SIZE) {
__assume(jj % BLOCK_SIZE == 0);

#pragma simd
for(j = jj; j < jj+BLOCK_SIZE;

++j)
a[i][j] = a[i][j]

- w[i][k]*a[k][j]
- w[i][p]*a[p][j];

}
}

}

Figure 6: Strip-mining in the basic algorithm — pseudocode

the use of OpenMP directives;

• -O3 — this option optimizes aggressively for maximum speed;

• -ipo — it enables interprocedural optimization (also between files);

• -no-prec-div — it improves the speed of floating-point dividing, at the cost
of its precision;

• -fp-model fast=2 — this option enables some floating point optimizations
— also at the expense of its precision.

These options are quite a standard set of the optimization manners. Moreover,
some of them can have (nominally) some negative impact on the precision, how-
ever, some auxiliary tests showed that this influence is almost negligible in our
algorithms.

Additionally, the CPU programs were compiled with the option -xHost and
the MIC programs — with the option -mmic. These two options simply allowed
generating codes for the correct processors.

All the programs were tested on CPU (run directly from the operating sys-
tem) and MIC (run by the micnativeloadex command) with a various number
of threads (set with the use of the OMP_NUM_THREADS environment variable), with
no use of the hyperthreading on CPU. Three OpenMP scheduling manners were
investigated, namely static, guided, dynamic (the last one with two chunk sizes: 1
and 10). The scheduling techniques were tested because of their different influence
on the load balancing.

Nested Loop Transformations on Multi- and Many-Core Computers With Shared Memory 173

for(k = 0; k < n/2-1; k++) {
. . .

#pragma omp parallel for simd
for(i = k+1; i < p; i++) {

w[i][k] = (apk*a[i][p] - app*a[i][k])
* detinv;

w[i][p] = (akp*a[i][k] - akk*a[i][p])
* detinv;

}
start = RDTTNM(k+1, BLOCK_SIZE);

#pragma omp parallel for
for(ii = start; ii < p;

ii += BLOCK_SIZE) {
for(jj = start; jj < p;

jj += BLOCK_SIZE) {
__assume(ii % BLOCK_SIZE == 0);
for(i = ii; i < ii+BLOCK_SIZE;

++i) {
__assume(

jj % BLOCK_SIZE == 0);
#pragma simd

for(j = jj; j < jj+BLOCK_SIZE;
++j)

a[i][j] =
a[i][j]
- w[i][k]*a[k][j]
- w[i][p]*a[p][j];

}
}

}
}

Figure 7: Loop tiling in the fission algorithm — pseudocode

Table 1: Hardware and software used in the experiments
CPU MIC

2 × Intel Xeon E5-2670 v.3 Intel Xeon Phi 7120
(Haswell) (Knights Corner)

cores 24 (12 per socket) 61
threads 48 (2 per core) 244 (4 per core)
clock 2.30 GHz 1.24 Ghz
level 1 instruction cache 32 kB per core 32 kB per core
level 1 data cache 32 kB per core 32 kB per core
level 2 cache 256 kB per core 512 kB per core
level 3 cache 30 MB —
RAM memory 128 GB 16 GB
max. mem. bandwidth 68 GB/s 352 GB/s
SIMD register size 256 b 512 b
instructions’ execution out-of-order in-order
compiler Intel ICC 16.0.0
BLAS/LAPACK libraries MKL 2016.0.109

174 B. Bylina, J. Bylina

All the implementations were tested on random dense matrices which had the
WZ factorization with no pivoting needed. The sizes of the matrices were up to
12288× 12288. However, only the biggest size is shown in Section 5.

All the results present the computational performance. As its unit we use Gflops,
where flops is a floating-point operation per second. The number of floating-point
operations for the WZ factorization of the matrix of the size n×n is 2

3n
3− 7

6n−3, so
to obtain the metric in Gflops (= 109 flops) we divide the number of floating-point
operations by 109T — where T is the execution time of the measured implementa-
tion. Such a metric allows comparing all implementations with the same measure.
The execution time was measured with the use of a standard OpenMP function
omp_get_wtime.

5 Numerical experiments

5.1 Previous parallel implementations
First, as a basis for our optimization attempts, we tested parallel implemen-

tations from [3]. They are basic and fission (dubbed there ‘outer’ and ‘split’
because of the place and manner of parallelization). They were implemented with
the column-wise representation and the (i,j) sequence of the loops. Thus, we have
two types of implementations:

• basic-col

• fission-col-ij

Both the algorithms were tested both as explicitly vectorized — with the simd
clauses in #pragmas — and without these clauses. However, the lack of explicit
vectorization in the fission algorithm gave the performance several times slower
on both platforms. On the other hand, the performance of the basic version does
not depend on the explicit vectorization: the compiler detects the possibility and
optimizes the code appropriately, because the source is simpler. Thus, we show only
vectorized versions. Figures 8 and 9 show the performance of the basic-col version
(on CPU and MIC, respectively) and Figures 10 and 11 show the performance of
the fission-col-ij version (also on CPU and MIC, respectively).

All these tests performed rather poorly. On CPU, the fission implementation
(all schedulings except the dynamic one with the chunk equal to 1) is better than the
basic, although its performance does not exceed 6 Gflops. On MIC, the fission
implementation is also better (for the same schedulings), but performs a little worse
then on CPU (less then 5 Gflops). The performance of the basic version on CPU
depends on the scheduling; although, on MIC, the differences are very minute.
On the other hand, the fission version is very dependent on scheduling on both
platforms. On CPU, the order of the schedulings (from the best to the worst) is:
guided, dynamic (with the chunk size 10), static and dynamic (with the chunk
size 1). On MIC, the situation is more complicated, also because the performance
declines with the growth of the number of threads (here, there is no point in using
more then one thread per core).

Thus, we can see that all three aspects (algorithm, vectorization, scheduling)
can have some impact on the performance and all must be taken into account.

Nested Loop Transformations on Multi- and Many-Core Computers With Shared Memory 175

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 4 8 12 16 20 24

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

CPU, basic-col

schedule(dynamic, 10), explicit vect.
schedule(dynamic, 1), explicit vect.

schedule(static), explicit vect.
schedule(guided), explicit vect.

Figure 8: Manually vectorized basic-col on CPU

 0

 0.5

 1

 1.5

 2

 2.5

 3

 60 120 180 240

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

MIC, basic-col

schedule(dynamic, 10), explicit vect.
schedule(dynamic, 1), explicit vect.

schedule(static), explicit vect.
schedule(guided), explicit vect.

Figure 9: Manually vectorized basic-col on MIC

176 B. Bylina, J. Bylina

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 4 8 12 16 20 24

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

CPU, fission-col-ij

schedule(static)
schedule(dynamic, 10)

schedule(dynamic, 1)
schedule(guided)

Figure 10: fission-col-ij on CPU

 0

 1

 2

 3

 4

 5

 6

 7

 8

 60 120 180 240

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

MIC, fission-col-ij

schedule(static)
schedule(dynamic, 10)

schedule(dynamic, 1)
schedule(guided)

Figure 11: fission-col-ij on MIC

Nested Loop Transformations on Multi- and Many-Core Computers With Shared Memory 177

5.2 Matrix layouts and loop interchange

Next, we changed the matrix layouts (from column-wise to row-wise) and in-
terchanged the order of the i-loop and the j-loop; however, the loop interchange is
possible only in the fission implementation. Thus, we have the following varieties
of our algorithm:

• basic-col

• basic-row

• fission-col-ij

• fission-row-ij

• fission-col-ji

• fission-row-ji

Two of them (basic-col and fission-col-ij) were tested in the previous
subsection. Changing both the matrix layout and the order of the loops (from
fission-col-ij to fission-row-ji) did not change the performance results,
so they are not shown. The performance of the remaining versions on CPU are
shown in Figures 12 (basic-row) and 13 (fission-col-ji/fission-row-ij —
both versions with the layout compatible with the order of the loops gave the same
results on CPU). The performance on MIC are shown in Figures 14 (basic-row),
15 (basic-row but without the explicit vectorization), 16 (fission-col-ji), 17
(fission-row-ij).

The best performance (independent of scheduling) is obtained by basic-row
with the explicit vectorization. Obviously, the matrix layout and appropriate loops’
order have a key impact on performance. If the layout is compatible with the order
of loops (that is, (i,j) for row-wise, (j,i) for column-wise), the performance
grows significantly. On CPU, the explicit vectorization in basic has no importance
— it implies that the compiler can apply the vectorization automatically. However,
on MIC, the explicit vectorization is essential, although, it only works for the
proper matrix layout (that is, row-wise, because the loops must be in (i,j) order
in basic). With no explicit vectorization on MIC, additional threads (that is more
than one per core) enhance the performance, albeit they cannot catch up with the
explicitly vectorized implementation. On the other hand, additional threads do not
improve the performance; moreover, more than two threads per core even spoils
it. The type of scheduling has a very little impact on the performance. On CPU,
the performance grows rapidly (almost linearly) up to 6 threads, but after that it
stabilizes. On CPU, the best results are achieved by all the implementations which
have the matrix layout consistent with the loops’ order — with no regard to the
explicit vectorization. On the other hand, on MIC, the layout consistency is not
the only factor — the basic algorithm is much better, and it must be explicitly
vectorized (by #pragma omp simd).

178 B. Bylina, J. Bylina

 0

 5

 10

 15

 20

 0 4 8 12 16 20 24

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

CPU, basic-row

schedule(dynamic, 10)
schedule(dynamic, 1)

schedule(static)
schedule(guided)

Figure 12: basic-row on CPU

 0

 5

 10

 15

 20

 0 4 8 12 16 20 24

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

CPU, fission, layout compatible with loops

schedule(static)
schedule(dynamic, 10)

schedule(dynamic, 1)
schedule(guided)

Figure 13: fission-col-ji/fission-row-ij on CPU

Nested Loop Transformations on Multi- and Many-Core Computers With Shared Memory 179

 0

 10

 20

 30

 40

 50

 60 120 180 240

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

MIC, basic-row

schedule(dynamic, 10)
schedule(dynamic, 1)

schedule(static)
schedule(guided)

Figure 14: Manually vectorized basic-row on MIC

 0

 10

 20

 30

 40

 50

 60 120 180 240

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

MIC, basic-row (no explicit vectorization)

schedule(dynamic, 10)
schedule(dynamic, 1)

schedule(static)
schedule(guided)

Figure 15: Non-vectorized basic-row on MIC

180 B. Bylina, J. Bylina

 0

 10

 20

 30

 40

 50

 60 120 180 240

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

MIC, fission-col-ji

schedule(static)
schedule(dynamic, 10)

schedule(dynamic, 1)
schedule(guided)

Figure 16: fission-col-ji on MIC

 0

 10

 20

 30

 40

 50

 60 120 180 240

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

MIC, fission-row-ij

schedule(static)
schedule(dynamic, 10)

schedule(dynamic, 1)
schedule(guided)

Figure 17: fission-row-ij on MIC

Nested Loop Transformations on Multi- and Many-Core Computers With Shared Memory 181

 0

 5

 10

 15

 20

 0 4 8 12 16 20 24

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

CPU, basic-row-sm, schedule(dynamic, 1)

BLOCK_SIZE = 8
BLOCK_SIZE = 32
BLOCK_SIZE = 64

BLOCK_SIZE = 128
BLOCK_SIZE = 512

Figure 18: basic-row-sm on CPU with schedule(dynamic,1)

5.3 Strip-mining and loop tiling
Finally, we considered strip-mining (in the case of the basic version) and loop

tiling (in the case of the fission implementation). We tested only implementations
which gave reasonable results in the previous stage — that is, only those where the
loop order was consistent with the matrix layout. Various sizes of the blocks were
tested to experimentally check their influence on the efficiency. The sizes were 8,
32, 64, 128, 512. Thus, we tested the following versions:

• basic-row-sm-b

• fission-row-ij-lt-b

• fission-col-ji-lt-b

Here, sm stands for strip-mining, lt stands for loop tiling and b is the
BLOCK_SIZE. The results on CPU are shown in Figures 18 (basic-row-sm
for schedule(dynamic,1) — all schedulings gave the same results), 19
(fission-row-ij-lt for schedule(dynamic,10)), 20 (fission-row-ij-lt for
schedule(dynamic,1)). The results on MIC are shown in Figures 21
(basic-row-sm for schedule(dynamic,1)— all schedulings gave the same results),
22 (fission-row-ij-lt for schedule(dynamic,10)), 23 (fission-row-ij-lt for
schedule(static)).

The best performance (only about 13 Gflops) is obtained for the basic version
with the BLOCK_SIZE equal to 8 or 32 — although the tiling is not full (here

182 B. Bylina, J. Bylina

 0

 5

 10

 15

 20

 25

 0 4 8 12 16 20 24

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

CPU, fission-row-ij-lt, schedule(dynamic, 10)

BLOCK_SIZE = 8
BLOCK_SIZE = 32
BLOCK_SIZE = 64

BLOCK_SIZE = 128
BLOCK_SIZE = 512

Figure 19: fission-row-ij-lt on CPU with schedule(dynamic,10))

 0

 5

 10

 15

 20

 25

 0 4 8 12 16 20 24

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

CPU, fission-row-ij-lt, schedule(dynamic, 1)

BLOCK_SIZE = 8
BLOCK_SIZE = 32
BLOCK_SIZE = 64

BLOCK_SIZE = 128
BLOCK_SIZE = 512

Figure 20: fission-row-ij-lt on CPU with schedule(dynamic,1))

Nested Loop Transformations on Multi- and Many-Core Computers With Shared Memory 183

 0

 10

 20

 30

 40

 50

 60 120 180 240

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

MIC, basic-row-sm, schedule(dynamic, 1)

BLOCK_SIZE = 8
BLOCK_SIZE = 32
BLOCK_SIZE = 64

BLOCK_SIZE = 128
BLOCK_SIZE = 512

Figure 21: basic-row-sm on MIC with schedule(dynamic,1)

 0

 5

 10

 15

 20

 25

 60 120 180 240

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

MIC, fission-row-ij-lt, schedule(dynamic, 10)

BLOCK_SIZE = 8
BLOCK_SIZE = 32
BLOCK_SIZE = 64

BLOCK_SIZE = 128
BLOCK_SIZE = 512

Figure 22: fission-row-ij-lt on MIC with schedule(dynamic,10))

184 B. Bylina, J. Bylina

 0

 5

 10

 15

 20

 25

 60 120 180 240

p
e
rf

o
rm

a
n
ce

 [
G
fl
o
p

s]

number of threads

MIC, fission-row-ij-lt, schedule(static)

BLOCK_SIZE = 8
BLOCK_SIZE = 32
BLOCK_SIZE = 64

BLOCK_SIZE = 128
BLOCK_SIZE = 512

Figure 23: fission-row-ij-lt on MIC with schedule(static))

we have only the strip-mining within the inner loop). The worst performance is
obtained by the fission version with big blocks (the BLOCK_SIZE of 512). The best
BLOCK_SIZE for the fission implementation is 8, and it does not depends on the
matrix layout (unless it is incompatible with the loop order). However, comparing
the strip-mining and loop tiling implementations to the best of previous ones, these
modifications do not improve the results on CPU. Moreover, for some unlucky sets
of parameters, they impair the performance.

On MIC, the best performance (after strip-mining and loop tiling) is obtained
by the basic version with the BLOCK_SIZE equal to 128, and the worst is for
BLOCK_SIZE equal to 32. The best BLOCK_SIZE for the fission implementation is
also 128. However, the worst BLOCK_SIZE for the fission implementation is 8 (for
row-wise version). The best number of threads is 2 per core — more threads de-
crease the performance (or do not change, at best). The basic implementation was
not improved by the strip-mining, however the fission version with the loop tiling
was improved — although not capped the best basic implemetations.

Both for CPU and MIC, the basic version is better. The optimal BLOCK_SIZE is
different. The layout (for the fission version) is insignificant (provided it is consistent
with loop order). In this particular case, the strip-mining and loop tiling gave no real
advantage over the more traditional implementations. The dependencies between
remote areas of the memory (that is, the areas not local enough to fit together in
cache) in the WZ factorization are critical and they rendered the successful utilizing
of these techniques impossible for a traditional matrix layouts.

Nested Loop Transformations on Multi- and Many-Core Computers With Shared Memory 185

6 Conclusion

Tha aim of the paper were the investigation of the influence of two aspects of
the algorithm and its implementations on the performance. Those aspects were the
dense matrix layout in the memory and some loop transformations (namely: loop
interchange, strip-mining, loop tiling) — and the relations between them. Addition-
ally, the influence of other factors (optimizing the running of the implementation)
— namely explicit vectorization and scheduling — were studied. We considered
two types of the modern multicore and manycore hierarchical shared memory ar-
chitectures — like CPU and MIC. We did an analysis of the behavior of a dense
linear algebra algorithm (namely, the WZ factorization) containing nested loops
with strong dependencies between remote parts of the main memory.

Loop transformations with an appropriate matrix layout caused some perfor-
mance growth only in specific cases.

On CPU, the correspondence between the matrix layout and the loop order has
the largest influence on the algorithm optimization. The other factors (the explicit
vectorization and scheduling) have a marginal significance.

The MIC architecture performance is much better in general. However, its per-
formance depends strongly not only on the matrix layout and the loop order, but
also on the explicit vectorization, scheduling and the size of the block (for loop
tiling and strip-mining versions). The best performance on MIC is achieved by the
basic-row version with explicit vectorization, guided scheduling and 120 threads
(for the basic algorithm) and by the fission-rot-ij-lt-64 version with explicit
vectorization, static scheduling and 240 threads (for the fission algorithm). We
show that both the basic version and the fission version of the algorithm can
reach better performance on MIC than their analogs on CPU; although after some
careful manipulations, especially in the case of the fission version.

The methodology (that is, the appropriate layout and loop order, strip-mining
and loop tiling) applied here for a nested loop algorithm can be broadened to
other numerical tasks containing nested loops and strong, remote and complex
dependencies. It can also be utilized in other parallel languages and frameworks
(like Cilk). The obtained results can be too transferred to the latest Intel (or
other) CPU families. Higher performance can be expected on newer architectures
that include more cores and memory and longer vector registers.

In future work we plan to extend the study to other architectures, especially
GPU and the CPU-GPU hybrids — to see how the described methodology operates
on those architectures. We also intend to use another dense matrix layout, namely
a tiled storage scheme which can yet decrease the amount of cache misses.

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

186 B. Bylina, J. Bylina

[2] Beata Bylina and Jarosław Bylina. Strategies of parallelizing nested loops
on the multicore architectures on the example of the WZ factorization for
the dense matrices. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors,
Proceedings of the 2015 Federated Conference on Computer Science and In-
formation Systems, volume 5 of Annals of Computer Science and Information
Systems, pages 629–639. IEEE, 2015.

[3] J. Bylina and B. Bylina. Parallelizing nested loops on the Intel Xeon Phi on
the example of the dense WZ factorization. In 2016 Federated Conference on
Computer Science and Information Systems (FedCSIS), pages 655–664, 2016.

[4] Simplice Donfack, Jack Dongarra, Mathieu Faverge, Mark Gates, Jakub
Kurzak, Piotr Luszczek, and Ichitaro Yamazaki. A survey of recent devel-
opments in parallel implementations of Gaussian elimination. Concurrency
and Computation: Practice and Experience, 27(5):1292–1309, 2015.

[5] Jack J Dongarra, Mathieu Faverge, Hatem Ltaief, and Piotr Luszczek. Achiev-
ing numerical accuracy and high performance using recursive tile LU factor-
ization. Concurrency and Computation: Practice and Experience, 26(6):1408–
1431, 2013.

[6] D.J. Evans and M. Hatzopoulos. A parallel linear system solver. International
Journal of Computer Mathematics, 7(3):227–238, 1979.

[7] S. Chandra Sekhara Rao. Existence and uniqueness of WZ factorization. Par-
allel Computing, 23(8):1129–1139, 1997.

[8] P. Yalamov and D.J. Evans. The WZ matrix factorisation method. Parallel
Computing, 21(7):1111–1120, 1995.

[9] Basic Linear Algebra Subprograms, 2020.

[10] Intel Math Kernel Library, 2020.

Functioning of Transnational Civil
Society Organisations (TCSOs) in
Cyberspace

Ewelina Panas∗

1 Introduction
The aim of this article is to analyse the functioning of TCSOS in cyberspace:

the determinants of the activity of these organisations in the virtual world will be
analysed, the peculiarities of TCSOS that enable them to undertake activity in
cyberspace will be analysed, and specific examples of TCSOs’ involvement will be
given. The main thesis of the considerations in the article is the statement that
the peculiarities of TCSOs with regard to: firstly, the way they are organised (net-
worked, non-hierarchical) and secondly, the issues they deal with (global, crossing
border) determines the virtualisation of the activity of these entities, transferring it
to cyberspace. The starting point for the analysis of the issue of TCSOs activity in
cyberspace will therefore be the examination of the relationship between the prop-
erties of cyberspace and the specific nature of TCSOS (the characteristic qualities
of these organisations that affect the performance of their tasks in this particular
space).

One of the best known and widely quoted definitions of cyberspace is that
formulated by the US Department of Defense, according to which cyberspace is:
“The global domain of the information environment consisting of interdependent
networks formed by information technology (IT) infrastructure and the data they
contain, including the Internet, telecommunications networks, computer systems,
and embedded processors and controllers” [1]. Pointing out the basic elements of
cyberspace allows us to fully understand the essence of this peculiar environment:
vastness (global reach), bundling of all resources into one huge database, complex-
ity, and spatiality understood as the impossibility of relating cyberspace to the
physical (including geographical) dimensions of the real world [1].

Modern information and communication technologies are now widely available
and TCSOs with their solutions. The digitalisation of the life of societies also
includes the functioning of civil society organisations, especially those oriented to-
wards transnational activity, going beyond the borders of a single state. TCSOS
are understood as organisations which, while functioning in a transnational space,

∗Corresponding author — ewelina.panas@mail.umcs.pl

187

188 E. Panas

build the subjectivity of individuals and social groups, have a non-governmental
character, and are not profit-oriented in their activity. TCSOS are structures rep-
resenting civil society and the values and principles inherent in that community,
bringing together in their ranks (both members and supporters) people from differ-
ent countries, and their activity has a transnational dimension, which means that
it takes place “across and beyond national borders, the control of which the states
have consciously given up or limited” [2].

Undoubtedly, the flourishing of TCSOS activity in the international arena would
not have been possible without the scientific and technological revolution. The
transformations that took place in the international environment under the influ-
ence of this factor conditioned the development and character of the activities of
civil society organisations, equipping them with the instruments necessary to un-
dertake transnational activities. New technological developments, such as the de-
velopment of commercial media and the Internet, have provided organisations with
innovative tools, increasing their capacity to influence public opinion and centres of
power and, facilitating the promotion of specific issues. Technological changes have
also helped coordinate the geographically dispersed activities of TCSOS and made
it possible to carry out tasks such as: global networking and international coalition
building, exchange of experiences and ideas, mutual communication, association
and the collection, processing and transfer of information [3].

Today, by using methods and means that were not available 20 years ago,
transnational civil society organisations have the ability to disseminate information
almost instantaneously, take action to gain mass support, initiate public campaigns
on a global scale and encourage people around the world to get involved in their
projects [4].

2 Determinants of the virtualisation of TCSOs’ ac-
tivities

The transition of TCSOs in their activity to the cyber space is mostly related to
two factors. Firstly, the way these organisations operate, and secondly, the specific
nature of the domains in which they are present and active.

The first factor relates to the way in which these entities are organised, managed
and operate, in terms of the organisational forms/structure adopted and the meth-
ods of operation of TCSOS. One of the most common forms of TCSOS activity is
the establishment and functioning within transnational coalitions. An important
feature of TCSOS coalitions is their internal ’architecture’ — a network form of
organisation. TCSOS coalitions are a type of social network, forming “a dynamic
system of communication, cooperation and partnership between groups or insti-
tutions” [5]. It is a cross-border network of connections between individuals and
groups working together towards common goals. Such cooperation may be more
or less formalised and the actors may be individuals, NGOs, pressure groups or
interest groups. The purpose of networks is cooperation, exchange of information,
experience and taking joint initiatives. An important feature of networks created

Functioning of Transnational Civil Society Organisations (TCSOs) in Cyberspace 189

by TCSOs is their transnational character. We can speak of transnational networks
when: firstly, at least one of the actors forming them is of non-state character, and
secondly, they come from at least two countries [5].

Three basic criteria are used to distinguish networked coalitions as new, un-
conventional methods of regulating the international environment: first, this type
of interaction is applied to the solution of a specific, single problem. Secondly,
they are characterised by mixed participation. This is because they are formed
by heterogeneous groups of participants in international relations: states, interna-
tional organisations, non-governmental organisations. Thirdly, such coalitions are
not based on any binding international document. They do not result from any
existing international agreements or treaties [6].

Thus, transnational networked coalitions of transnational civil society organisa-
tions can be regarded as flexible, non-hierarchical, self-organised problem networks,
united by the pursuit of common goals and objectives, which transcend national
borders. The basic bond of TCSOS network coalitions is a specific value system,
acting for a common cause and initiating and engaging in an international debate
on a specific phenomenon or problem.

A key element in the functioning of network coalitions of transnational civil
society organisations is the use of virtual space. It seems that this space — remov-
ing all barriers and restrictions and enabling the global flow of ideas and almost
immediate exchange of information — is the optimal environment for networked,
non-hierarchical, cross-border structures such as TCSOS coalitions. By operating
in cyberspace, TCSOS reach a wide audience with their mission and message. The
virtual activity of coalitions of transnational civil society organisations results from
their ability to adapt to the specific parameters of this space and use its properties
to pursue their own interests. In fact, one might even venture to say that TCSOS
coalitions — and transnational civil society organisations in general — are endowed
with a specific kind of cyber-power, meaning “the ability to achieve desired results
through the use of information resources, electronically connected in virtual space
(cyberspace)”, which is based on resources related to “the creation, control and
transmission of electronic information”. The spectrum of these resources includes:
infrastructure, networks, software, human skills and knowledge [7].

The second factor that favours the transition of TCSOs in their activity to
the cyber space is the specificity of the fields of interest and activity of these
organisations. TCSOs deal with a variety of problems and are present and active in
many spheres of international reality. The organisations are most interested in issues
related to environmental protection, humanitarian aid, protection of human rights,
problems of poverty, poverty, social and ecological responsibility of transnational
corporations, marginalisation of many social groups or international justice in the
sense of distribution of world wealth. The non-territorial quality of these problems
— their specificity lies in the fact that they take place at the local, regional and
global level. The essence of the action taken by civil society organisations, mainly
through the use of solutions provided by cyberspace, lies in combining and co-
shaping the local with the global. This is a decisive element in the effectiveness of
these actors — TCSOS become part of the regulation of problems of a cross-border
nature and those operating in a transnational social space [8].

Cyber space is therefore a source of solutions and instruments with which TC-

190 E. Panas

SOS are able to pursue their mission — to solve problems of a global, cross-border
nature.

3 Functions performed by TCSOs in cyberspace
The functioning of TCSOS in cyberspace is related to the performance of spe-

cific functions by these actors. Craig Warkentin points to a number of tasks that
transnational CSOs carry out through the Internet: improving internal organisation
and facilitating communication with partner organisations, shaping public percep-
tions, disseminating information about ongoing projects, encouraging involvement
in ongoing activities [9]. Moreover, the websites created by TCSOS foster the dis-
semination of information about the organisations themselves and their work, fa-
cilitate the recruitment of new members and communication with existing ones,
and provide the possibility to post information asking for financial support [9].

Cyber space is used by TCSOs primarily for: communicating with members
and supporters, multiplying messages (implementing agenda setting) and building
and reinforcing a particular narrative, organising online (virtual) demonstrations,
hacking attacks.

Communication with members and supporters. The specific nature of
membership means that in order to maintain constant contact with members and
supporters, organisations need to use tools that enable them to do this for peo-
ple from different countries. Maintaining constant contact, providing information,
engaging members in lobbying activities is possible by using solutions available in
cyberspace.

Multiplication of messages (implementation of agenda setting), spe-
cific narrative building, Virtual space — by creating new opportunities for
communication, opening new channels for the articulation of alternative visions,
proposals and solutions — makes it possible not only to maintain contact with
members and supporters, but also to multiply the message of TCSOS, which is
another important utility of cyberspace.

The technological infrastructure that has emerged as a result of scientific and
technological progress has become a ’transmission belt’ for the demands, innovative
solutions, ideas and projects created by TCSOS. Civil society organisations are
a valuable source of information and ideas, and modern technologies favour the
distribution of these “products” through traditional channels, such as the press,
radio or television, but also by using new forms of communication, such as social
networking sites, blogs or podcasts. Even small organisations with small budgets,
thanks to the low cost and high technological quality of digital recordings, can
gather and disseminate information irrespective of their location [3].

Organising online (virtual) demonstrations. Internet users can come to-
gether much more effectively, cheaply and quickly, and organising actions can be
done by phone and email.

They can also work with other organisations in transnational, networked coali-
tions. The changes associated with the scientific and technological revolution are
also conducive to the networking process: the number, density and size of networks
are increasing, and they are becoming more professionalised [9]. Structures that
use technological innovation to strengthen cooperation between TCSOS include

Functioning of Transnational Civil Society Organisations (TCSOs) in Cyberspace 191

the Association for Progressive Communication (APC), a network of civil society
organisations that aims to develop and support organisations, social movements
and individuals through the use of new information and communication technolo-
gies1.

4 Case study
The concept of a currency transaction tax (the so-called “Tobin tax” — CTT),

first appeared in 1972, when the American economist James Tobin, postulating
a reform of financial markets, proposed to impose a fee (of between 0.1% and
0.5%) on foreign exchange transactions, arguing that this would limit the scale
of purely speculative transactions2 [10]. The proposed reform, which James Tobin
has graphically described as “throwing sand on the wheels of the global finance
machine”, was intended — by raising transaction costs — to stabilise financial
markets and increase the independence of states, especially with regard to the
autonomy of monetary policy [11]. James Tobin referred in his conception to the
views of John M. Keynes. As he pointed out, “(...) Keynes had already seen in
his time that the advantages of liquidity and transactions of financial instruments
meant a surge in speculation that was short-sighted and inefficient (...) he was right
to suggest creating greater impediments to short-term transactions and rewarding
long-term investors” [12].

James Tobin’s idea has gained a wide range of supporters, but also opponents.
The arguments of opponents of the CTT concept are based on the assumption
that a currency transaction tax could only be effective if all, or at least a large
majority of countries, introduced it, which would prevent currency transactions
from migrating abroad. “Tobin tax” has also been criticised on the grounds that by
increasing transaction costs, it would have a detrimental effect on the efficiency of
the market mechanism [9].

The interest of civil society organisations in the “Tobin Tax” emerged in the
early 1990s, as the “philanthropic” dimension of the concept was recognised, mean-
ing that it began to appear in the context of a debate on attempts to find alternative
sources of financing for the United Nations and, more generally, as an instrument
for reducing global poverty. The issue of the ’Tobin tax’ as a tool for combating
world poverty was discussed, among others, at the World Summit for Social De-
velopment in Copenhagen in 1995 [13]. It has been argued that raising transaction
costs would generate funds that could potentially go towards economic stabilisa-
tion and meeting the social needs of countries in the South and supporting UN
activities.

Thus, for civil society organisations, the concept of a currency transaction tax,
which was intended by its creator as a tool to stabilise financial markets, was part
of a broader debate on global social justice, counteracting the unregulated and
unfair distribution of wealth and its concentration in the hands of the richest. The
organisations considered the introduction of CTT in terms of counteracting the
negative effects of globalisation processes, such as progressing material and public

1See: Website of the Association for Progressive Communications, http://www.apc.org/
2See: D. Rosati, Co z podatkiem finansowym?, „Gazeta Wyborcza” 30.01.2012, http://

wyborcza.biz/biznes/1,101562,11051865,Co_z_podatkiem_od_transakcji_finansowych_.html

http://www.apc.org/
http://wyborcza.biz/biznes/1,101562,11051865,Co_z_podatkiem_od_transakcji_finansowych_.html
http://wyborcza.biz/biznes/1,101562,11051865,Co_z_podatkiem_od_transakcji_finansowych_.html

192 E. Panas

polarisation and stratification of societies, which results in a growing number of the
excluded, i.e. people and groups who do not participate in social life in any way
due to the lack of access to resources [12].

According to estimates by organisations promoting the ’Tobin Tax’, the intro-
duction of a CTT of 0.1% on the value of international currency transactions would
provide funds of around USD 150 billion per year. The revenue from the tax could
be used, as advocated by the organisations, to achieve such goals as the fight against
hunger, providing access to clean water, health services and universal education in
the countries of the South. And, at 0.003%, the CTT would provide funding to
cover the costs of all peacekeeping operations conducted under UN auspices. In
this sense, the CTT would become an important instrument in the fight against
inequality and social exclusion in the world3.

The populist appeal of the slogans resulted in a rapid increase in the number
of supporters of the use of foreign exchange tax as a tool to fight social injustice.
Initially, the popularity of the concept was volatile, but the Asian financial crisis
that began in June 1997 catalysed the development of various grassroots initiatives
to find new tax solutions as a response to the financial crisis. Soon, the promotion
of the “Tobin Tax” assumed the dimension of a transnational campaign for the
introduction of a CTT, inspired and coordinated by ATTAC (Association pour la
Taxation des Transactions Financière et l’Aide aux citoyens — Association for the
Taxation of Financial Transactions and Assistance to Citizens) [14]. The association
associated with the Le Monde Diplomatique newspaper was created in December
1998 in France and is now a network of organisations operating in more than 40
countries4. In Poland the organisation operates under the name Citizens’ Initiative
for Taxation of Capital Trading — ATTAC5.

At the same time, independent of the initiative that led to the creation of AT-
TAC, a number of other civil society organisations have also made the imposition of
a tax on currency transactions a leitmotif of their campaigns. The most important
organisations lobbying for the introduction of a “Tobin tax” are: International Co-
operation for Development and Solidarity, an alliance of 15 Catholic development
organisations from Europe and North America, the Halifax Initiative — a coalition
of faith groups, environmental, human rights, development and social justice or-
ganisations, World Women’s March, Third World Network, Global South, Network
Institute for Global Democratization (NIGD) — an international network of nearly
100 academics, Tobin Tax Initiative (Tobin Tax Initiative) and War or Want, an
organisation fighting poverty in developing countries [10].

The activity of these organisations became an expression of contestation of the
global economic order, symbolised by international financial institutions. Therefore,
the activists’ demands were directed against the financial sector — it was considered
that it bears a significant part of the responsibility for the financial crisis, and
therefore should contribute more to the costs of removing its consequences [15].
ATTAC, together with other organisations involved in the campaign for a ’Tobin
tax’, took part in many demonstrations against the G8, the G20 and also in the

3See: Website of the ATTAC, http://www.attac.org/en/whatisattac/
international-platform

4See: Website of the ATTAC, http://www.attac.org/en/overview
5See: Website of the Obywatelska Inicjatywa Opodatkowania Obrotu Kapitałowego, http:

//www.attac.pl/

http://www.attac.org/en/whatisattac/international-platform
http://www.attac.org/en/whatisattac/international-platform
http://www.attac.org/en/overview
http://www.attac.pl/
http://www.attac.pl/

Functioning of Transnational Civil Society Organisations (TCSOs) in Cyberspace 193

demonstrations that led to the blocking of negotiations at the 1999WTO conference
in Seattle. And in 2000, under the banner of ’anti-Davos’, a parallel conference
to the World Economic Forum (WEF) summit was organised. The “anti-Davos”
conference started with a seminar in Zurich, followed by an activist march to Davos.
ATTAC is also one of the organisations that organised the first World Social Forum
in Porto Alegre in 2001, which was attended by around 10,000 people6 [10].

This alternative initiative to the World Economic Forum aimed to create a
social platform for discussion and exchange of ideas. The activists’ actions were
an expression of dissatisfaction with the current global socio-political order and
the fact that in the forums of international organisations — in the opinion of the
activists undemocratic and not representing the entire world society — decisions
affecting everyone are made. These activities were also aimed at convincing public
opinion that a more democratic system could be created by introducing appro-
priate mechanisms. One of the proposals for economic stabilisation and balancing
the position of rich and poor societies was the introduction of a tax on currency
transactions.

The popularity of the ’Tobin tax’ concept was variable. The impetus for in-
creased efforts, not least by civil society organisations, to adopt a mechanism to
regulate the financial markets was provided by the recent financial crisis that began
in 2008. The discussion on the introduction of a tax on foreign exchange trading
flared up again. As a consequence of the variety of actors involved in the campaign
for the adoption of a ’Tobin Tax’, there are different visions regarding the intro-
duction of a CTT. Two options are being considered with regard to how revenues
generated from foreign exchange transactions would finance development needs.
War on Want advocates a minimalist version of the CTT of 0.05%, with the tax
levied not only on currency transactions but on banks’ financial transactions in
general (the so-called ’Robin Hood tax’). The revenue from the tax would make it
possible to “raise USD 20 billion each year to support the Millennium Development
Goals fund”7.

In contrast, ATTAC is lobbying for the adoption of the CTT in the form of
an international agreement. The organisation has developed a ’Draft Global CTT
Treaty’, which is also supported by other organisations associated with the World
Social Summit. In addition, the first model involves the CTT being implemented
unilaterally by individual states or the European Union. As proponents of this
option argue, the EU is a large enough economic organism to be able to implement
a financial transaction tax unilaterally on its own and safely. The ATTAC proposal,
on the other hand, is for global regulatory change. In response to War Or Want,
ATTAC economists propose a two-tier capital transaction tax, with two CTT rates:
a lower rate for transactions within the tax zone and a higher rate for transactions
between ’Tobin Tax’ countries and the rest. The idea is that this would encourage
other countries with links to European economies to join the CTT zone [10].

The transnational mobilisation of civil society organisations promoting the ’To-
bin Tax’ as a tool to address North-South disparities has helped to bring the issue to
the attention of policy makers and to the attention of parliaments in many coun-

6See: Website of the ATTAC, http://www.attac.org/en/overview
7See: Website of the War or Want, http://www.waronwant.org/campaigns/tax-justice-now/

the-robin-hood-tax

http://www.attac.org/en/overview
http://www.waronwant.org/campaigns/tax-justice-now/the-robin-hood-tax
http://www.waronwant.org/campaigns/tax-justice-now/the-robin-hood-tax

194 E. Panas

tries, the European Parliament and many international organisations, including
the UN. Many countries supported the TCSOS initiative and the introduction of a
’Tobin Tax’ — in 1999 in Canada, in 2001 in France and three years later in Bel-
gium, proposals were adopted supporting the implementation of the CTT. In 2004,
a minimalist version of the CTT [12, 10] was supported by the then presidents:
France — Jacques Chirac and Brazil — Luiz Inácio Lula da Silva. The presidents
of Brazil and France were soon joined by the presidents of Chile and Spain and
the UN Secretary-General. The so-called Lula-Chirac Initiative was followed by the
report “Action against Hunger and Poverty”, which proposed the establishment of
alternative sources of financing for “public welfare and development” through the
creation of financial mechanisms at the international level that would contribute
to reducing global poverty [16]

The idea of introducing a tax on financial transactions has recently emerged
as part of the “programme” and one of the demands of the so-called “Outraged”
movement, which emerged on the wave of social discontent caused by the 2008
crisis, but the escalation of the activity of the “Outraged” took place in 2011. The
“Tobin Tax” has been integrated into a series of demands concerning the need
to rebuild the badly organised global socio-political order [15]. The source of the
global protest, which took the form of an international movement, was the Spanish
Revolution of the Indignados (revolution of the “indignados”), a mass protest that
began on 15 May 2011 in the Puerta del Sol square in Madrid (and almost 50
other Spanish cities). The Spanish indignados inspired multitudes of young people
around the world. On 17 September 2011, with a series of demonstrations on Wall
Street in New York, the Occupy Wall Street movement launched its campaign as
an expression of dissatisfaction with the lack of social solidarity of the political
and economic elites in the fight against the crisis8. Another initiative by activists
demanding change, which united thousands of people around the world, was the
15 October Agreement. The creation of this movement was also inspired by the
activity of the Spanish indignados. The activity of the movement is a demonstration
of opposition to the current economic and political status quo. On 15 October 2011,
a global demonstration began — protests took place simultaneously in more than
951 cities in 82 countries — under the slogan ’united for global change’. (United for
Global Change), which was to express solidarity and identification with the goals
and demands of Occupy Wall Street [15].

“Outraged” questions the international political and economic order, while the
axis of criticism is based on the inept ways of fighting the global crisis, which,
according to the movement’s participants, comes at the expense of society9. As a
result of the crisis of trust in the ability of international bodies to regulate the
unstable global order, there are demands for the introduction of new instruments
that would make it possible to reduce the disproportions between the poor South
and the rich North, but also to counteract the social polarisation within individ-
ual countries. One of the instruments promoted by the Outraged to fight social
and economic inequalities — besides abolishing the dictatorship of transnational

8See: V. Dobnik, Wall Street protesters: We‘re for the long houl, “Bloomberg Businessweek”
2.10.2011; http://www.businessweek.com/ap/financialnews/D9Q4CNR81.htm

9See.: T. Bielecki, Bunt Oburzonych, „Gazeta Wyborcza” 23.05.2011, http://wyborcza.pl/1,
76842,9646298,Bunt_oburzonych.html

http://www.businessweek.com/ap/financialnews/D9Q4CNR81.htm
http://wyborcza. pl/1,76842,9646298,Bunt_oburzonych.html
http://wyborcza. pl/1,76842,9646298,Bunt_oburzonych.html

Functioning of Transnational Civil Society Organisations (TCSOs) in Cyberspace 195

corporations, abolishing the so-called tax havens and cancelling the debts of the
countries of the South — is the introduction of a tax on international trade in
currencies [15].

The analysed campaign, apart from being an interesting voice in the discussion
about the need for changes in the global economy and the ways of implementing
possible transformations, is also an interesting material for reflection in the context
of analysing the use of soft power by transnational civil society organisations. On
the basis of the above considerations, the campaign for the “Tobin Tax” can be
considered a model example of the ability to use the attractiveness of a target.
Slogans for the enforcement of responsibility on those participants in international
relations, whose actions led to the global crisis and, ultimately, to the deterioration
of the living conditions of the inhabitants of poor countries of the South, met with
the approval of those societies that feel victimised, in their opinion, by the unfair
distribution of global wealth.

Although the Campaign for a Tax on Foreign Currency Transactions has so
far failed to achieve its main objective, the mere introduction of the issue of a
’Tobin Tax’ into the international discussion in various fora can be considered a
major achievement. The organisations have succeeded in popularising the CTT as
a tool for balancing the situation of the inhabitants of the North and the South.
Undoubtedly, the campaign promoting the Tobin Tax is a demonstration of the
ability of civil society organisations to shape the international public debate [14, 16]
Activists have succeeded in directing the attention of global public opinion to the
problem of the concentration of wealth, the deepening stratification of societies and
the development and economic disparities between countries.

The fundamental weakness of the ’Tobin Tax’ campaign appears to be the
criticisms made by some economists of the very concept of a tax on international
currency transactions. As already mentioned, the crowning argument against the
CTT is the possibility of avoiding the levy by moving transactions to a country
where the tax does not apply. There is also a not insignificant organisational and
conceptual split between the organisations involved in promoting this instrument,
resulting in two models of the tax — the minimalist CTT project, promoted by
War Or Want, and the ’Draft Global CTT Treaty’, developed by ATTAC. The
lack of a common position and a precisely defined objective certainly weakens the
campaign message and efforts to tax financial transactions.

Cyberspace has also played a huge role in another campaign organised by TC-
SOs — the Campaign against the Multilateral Agreement on Investment (MAI).
Of key importance throughout the campaign was the virtual collaboration between
organisations. TOSO’s use of the Internet was conducive to the core tasks of the
campaign — disseminating information about the MAI (as well as activists’ inter-
pretations of the meaning of the agreement) and reaching out to broad audiences
through Internet links. Thanks to this form of cooperation, many new organisations
were mobilised and communication between organisations already involved in the
campaign was improved. The use of the Internet also made it possible to directly
influence political decision-makers — the websites of the organisations involved in
the campaign provided e-mail addresses to members of national parliaments. More-
over, the use of technological infrastructure enabled social activism in a form that
Ronald J. Deibert calls armchair activism, meaning that individuals could engage

196 E. Panas

in the campaign against the MAI via the Internet and contribute to its success —
joining the debate on the agreement under preparation and exerting pressure on
individual governments, even without leaving their own homes10 [19].

Among the ways in which TCSOs use cyberspace are cyber activism and hack-
tivism. Cyber activism is the use of the Internet to organise protests, demonstra-
tions and lobbying, or to draw attention to and introduce a particular topic into
international public debate. Online demonstrations can be cited as an example of
cyber activism. One of the most spectacular virtual demonstrations was an ac-
tion organised on the social networking site Facebook under the slogan “We are
all Khaled Said”. The page was set up on Facebook to commemorate a 28-year-old
Egyptian man who was beaten to death by Egyptian police (original name Kullena
Khaled Said). The page became a channel for the articulation of public discontent
caused by these TCSOs covering of torture and police brutality [20].

Hacktivism, on the other hand, is the action of using IT knowledge with the
intention of achieving a specific political or social goal. One type of hacktivism is
hacking attacks on the websites of individual institutions whose actions are con-
tested by activists. The events taking place in 2011-2012 with the participation of
activists from the Anonymous group, which opposed the adoption of a multilat-
eral agreement aimed at establishing international standards in the fight against
infringements of intellectual property (ACTA — Anti-Counterfeiting Trade Agree-
ment), are a manifestation of the aspirations of civil society to participate in setting
the rules of control of the space that is the Internet [15]. The actions of Anony-
mous also demonstrate that decision-making in regulating this virtual sphere of
international life requires multilateral consultation, including with the public.

5 Summary

Zygmunt Bauman pointed to the specificity (specific nature) of the functioning
of transnational and virtual space and the incompatibility of state structures with
the transformations taking place within it: “power, power — Macht, as Max Weber
said — is already gliding in extraterritorial space, while all democratic institutions,
institutions of political control over the use of power are still local. This means that
this real power — Macht — is out of reach”11. Therefore, it can be concluded that
virtual space is a potential source of power, but only for those entities that can
functionally and structurally assimilate to it — “tune in” and adapt to the specific
conditions present in it. Its effective use as an “infrastructure” favourable for the
realisation of specific goals depends on the degree of adaptability and flexibility
of individual entities. It seems that the potential of virtual space will be most
effectively used by entities whose properties, method of organisation and logic of
functioning correspond to the specificity of this environment. TCSOS, as flexible
entities with a network structure of organisation and great ability to adapt to the
changing conditions of the international environment, seem to be “programmed” to
function in this space.

10See: M. Drohan, How the Net killed the MAI: grassroots groups used their own globalization to
derail deal, “The Globe and Mail” 29.04.1998, http://www.chebucto.ns.ca/~aj382/how_net.html

11See: Tak zwana globalizacja, wywiad Witolda Gadomskiego z Zygmuntem Baumanem,
„Gazeta Wyborcza”, 09.11.2001, http://wyborcza.pl/1,76842,534465.html

http://www.chebucto.ns.ca/~aj 382/how_net.html
http://wyborcza.pl/1,76842,534465.html

Functioning of Transnational Civil Society Organisations (TCSOs) in Cyberspace 197

It is worth referring here to the observations of Sidney Tarrow, who, while re-
searching social movements in terms of their impact and strength, came to the
conclusion that collective trust, which is the basis for the functioning of such co-
operative structures, cannot develop and strengthen without the collective, direct
experience of people involved in such cooperation. The source of such experiences —
and, at the same time, the factor which is of paramount importance in strengthen-
ing mutual trust and developing cooperation within social networks and movements
— can only be direct encounters in the real sphere. Virtual activism is devoid of
such implications [17]. Sidney Tarrow’s thoughts gain particular significance espe-
cially in the context of emerging arguments about the shortcomings of global civil
society, the activity of which is increasingly shifting to the virtual sphere. As Har-
ris Breslow argues, civil society in the global dimension will always be limited in
some way, mainly due to the fact that functioning in the virtual sphere makes it
impossible to create structures of a truly civic and communal character [18, 19].

However, it seems that these opinions are not fully justified. As a rule, the activ-
ities and strategies of global civil society organisations combine elements related to
both virtual and real space. The Internet is a tool that facilitates the functioning of
these entities, fosters the exchange of information, organisation of actions, mutual
communication between individual organisations and between the organisation and
its members. However, virtual activism does not replace real activism — it is a sig-
nificant supplement to it. Examples of organisations functioning in this way include
the Pirate Party and Anonymous, whose activity is based on a skilful combination
of virtual and real activity. It seems that at present such a way of functioning —
combining “traditional” methods with new ones based on technological innovations
— is characteristic of most, if not all, global civil society organisations.

References
[1] Wasilewski, Janusz. “Zarys definicyjny cyberprzestrzeni.” Przegląd Bez-

pieczeństwa Wewnętrznego 5.9 (2013)

[2] Dumała, Andrzej. “Uczestnicy transnarodowi–podmioty niezależne czy kon-
trolowane przez państwa?.” Państwo we współczesnych stosunkach między-
narodowych (1995)

[3] Yaziji M., Doh J., Organizacje pozarządowe a korporacje, Warszawa 2011.

[4] Mingst K., Podstawy stosunków międzynarodowych, Warszawa 2006.

[5] Dumała, H. “Transnarodowe sieci w stosunkach międzynarodowych, w: Pietraś
M.” Międzynarodowe stosunki polityczne. Lublin (2006).

[6] Haliżak, Edward, and Roman Kuźniar, eds. Stosunki międzynarodowe: geneza,
struktura, dynamika. Wydawn. Uniwersytetu Warszawskiego, 2000.

[7] Nye, J. S., The Future of Power, New York 2011.

[8] Pietraś, M., Piórko, K., Podmioty transnarodowe, w: M. Pietraś (red.),
Międzynarodowe stosunki polityczne, Lublin (2006).

198 E. Panas

[9] Karns, M. A., Mingst ,K. A. and Kendall W. Stiles. International organiza-
tions: The politics and processes. Boulder,Colorado: Lynne Rienner Publishers,
Inc, 2004.

[10] Patomäki, H. Global Tax Initiatives: The Movement for the Currency Trans-
action Tax, “Civil Society and Social Movements Programme Paper” 2007, no.
27, s. 1

[11] Patomäki, H. “The Tobin Tax and Global Civil Society Organisations: The
Aftermath of the 2008-9 Financial Crisis.” Ritsumeikan Annual Review of
International Studies 8.1 (2009)

[12] Tobin, James. “On the efficiency of the financial-system.” Lloyds Bank Annual
Review 153 (1984)

[13] H. Patomäki, The Tobin Tax and Global Civil Society Organizations: The
Aftermath of the 2008-9 Financial Crisis, „Ritsumeikan Annual Review of In-
ternational Studies” 2009, vol. 8, no. 1, p. 3.

[14] Zachara, Małgorzata. Global governance: ład międzynarodowy po zakończeniu
stulecia Ameryki. Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego, 2012.

[15] Nakonieczna-Bartosiewicz, Justyna. “Pozasystemowe poszukiwanie sprawiedli-
wości w stosunkach międzynarodowych. Alterglobaliści. Ruchy oburzenia oby-
watelskiego. Haktywiści.” Sprawy Międzynarodowe 2 (2012)

[16] Likosky B., Mueller M. L., Civil Society Intervention in the Reform of Global
Public Policy, Proceedings from the IRG Ford Foundation International Sem-
inar, Paris 17-18-19.04. 2007

[17] Tarrow S., Power in Movements: Social Movements and Contentious Politics,
Cambridge 2011, p. 119-125.

[18] Breslow H., Civil Society, Political Economy, and the Internet, w: S. G. Jones
(ed.), Virtual Culture: Identity and Communication in Cybersociety, London
1997, s. 236-257

[19] Deibert, R. J., International Plug‘n Play? Citizen Activism, the Internet, and
Global Public Policy, „International Studies Perspectives” 2000, no. 1, p. 256.

[20] Abdulla, R., Poell, T., Rieder, B., Woltering, R., & Zack, L. (2018). Facebook
polls as proto-democratic instruments in the Egyptian revolution: The ‘We
Are All Khaled Said’Facebook page. Global Media and Communication, 14(1),
141-160.

Applying Ethics to Autonomous
Agents

Tomasz Zurek∗

Dorota Stachura-Zurek

1 Introduction

The speedy development of the field of science called artificial intelligence that
we have been witnessing in recent years has triggered the equally astounding de-
velopment of autonomous devices, which have evolved from objects of interest for
SF writers into the tools we use every day and have already gotten quite used to.
Although the existence of robot vacuum cleaners do not seem to pose serious risks,
a number of more complex devices, like autonomous cars, may prove dangerous not
only for their users, but also for other traffic participants. Moreover, following [15],
we claim that the increasing autonomy of devices requires much more than specific
limitations of their “freedom” of conduct (like Asimov’s famous rules of robotics)
and calls for the moral or ethical reasoning that should be a crucial internal element
of the entire decision process.

On the other hand, we consider ourselves far from saying that we need anything
like “machine ethics” in the sense that machines should work out their own ethical
principles ([15] points out the possible risks of such an approach). For the users
and witnesses of the work of autonomous devices, it is important that the machine
should follow human ethical principles rather than “machine ethics” itself (whatever
it would mean). Such an approach is coherent with the so-called weak AI assump-
tion, meaning that we are attempting to create a machine which behaves like an
intelligent agent, not the machine which is intelligent. We believe that such a view
on the problem of ethical autonomous devices is, from practical point of view, much
more appealing than the approach in which the machine creates its own “ethics”
(even if it was possible, how could we guarantee that such ethics would be coherent
with ours?).

A vast number of philosophical theories refer to human ethics and present var-
ious views on the mechanisms of human moral deliberations and decisions; none of
them, however, seems complete and exhaustive. Among all those approaches most
influential are: deontology, consequentialism, and virtue ethics. The first one as-
sumes that human ethical choices are made with respect to, mainly deontic, rules

∗Corresponding author — tomasz.zurek@mail.umcs.pl

199

200 T. Zurek, D. Stachura-Zurek

and principles; the second one focuses on the analysis of the consequences of deci-
sions; and the third one focuses on the concept of virtues and vices, where morally
good actions exemplify virtues and morally bad actions exemplify vices.

Considering the above, we are going to present a discussion and a model of
a decision making mechanism which implements some assumptions of two of the
above mentioned ethical theories. Since the deontological approach has been already
extensively discussed in many other papers (an in-depth analysis can be found
in [21]), our aim is to examine how consequentialism and virtue ethics can be
implemented in the decision making mechanism of an autonomous device.

The two main approaches to AI-based decision making mechanisms are known
as knowledge-driven and data-driven. Although data-driven systems are dominat-
ing at present, they still have a number of important limitations. Many researchers
point out that the way of overcoming the limitations of machine learning-based
mechanisms is the development of hybrid systems which would connect the ele-
ments of both approaches. Although we agree with this statement, it is not our
goal to present here a complete structure of such an approach. We aim at pre-
senting our model of a knowledge-driven part of such a system which allows for
implementing the two ethical theories mentioned above. The model will be cre-
ated on the basis of the formal background of a value-based model of teleological
reasoning presented in [25] and [26], further referred to as the GVR model.

2 Contribution
Our contribution can be summarized as follows:

• We present a discussion of the various approaches to ethics and ethical deci-
sion making in the light of autonomous devices;

• We distinguish particular theories which can be implemented in autonomous
devices;

• We present a novel model of consequentialist and virtue ethics;

• We illustrate the model with an example;

• We present an in-depth discussion of our model in the light of the existing
approaches.

3 Ethical theories
It is common to distinguish three major types of ethical theories: consequential-

ism, deontological ethics, and virtue ethics. We will continue to use this distinction
for the purposes of our paper.

3.1 Consequentialism
Basically speaking, the main characteristics of consequentialist ethical theories

is that normative properties depend on consequences [19]; therefore the best deci-
sion is the one which will entail most favorable consequences. Opinions differ on

Applying Ethics to Autonomous Agents 201

whether the consequences should be real, predicted, or predictable; whether rea-
soning based on consequences should apply to particular situations, or rather to
constructing general rules governing ethical considerations; whether there should
only be one scale with the general value “pleasure” or “happiness” or should more
values be used; and so on.

The founding father of the modern utilitarian school of ethical thinking, Jeremy
Bentham, believed that the goodness of actions lies in the maximization of hap-
piness and supported the concept of utility, understood as the greatest happiness
for the greatest number of people [7]. Bentham’s follower, J.S. Mill, developed the
utilitarian theory to include more elaborate concepts of, for example, what pleasure
and pain actually are. Since then, a number of theories drawing from Bentham’s
and Mill’s utilitarianism have been formed, some of which have drifted away quite
far, and they have been functioning under the label of consequentialism coined by
Anscombe in her famous essay [3].

For the purposes of this paper, we accept a version of consequentialism under-
stood as:

• agent neutral, meaning that evaluation of the consequences does not change
regardless of whose perspective is used;

• preferential, meaning that what is good is the fulfilment of the agent’s pref-
erences understood not as a sensation, but as a state of affairs;

• pluralistic, meaning that there are irreducible plural values (as opposed to the
monist one fundamental value — “pleasure” or “happiness” or “overall good”)
to be considered;

• act-based, meaning that consequences are evaluated for each situation.

These assumptions seem legit from the point of view of applying consequentialism
in autonomous devices. They attempt to ensure predictable and explainable deci-
sions being made by agents; they take into consideration the fact that autonomous
devices are usually created for specific tasks, and do not deal with such a variety of
decisions as humans; they in a way overcome a serious limitation of consequentialist
theories in humans, namely the impossibility to calculate all consequences for all
possible scenarios in a given decision situation [19]. We could therefore cautiously
assume that applying consequentialist patterns, or elements of such decision-making
in autonomous devices, could yield some interesting results.

3.2 Deontology

Deontological ethics, sometimes referred to as the most popular form of non-
consequentialism, assumes that some acts must not be performed even if it may
possibly lead to bad results [16]. In other words, some choices must be morally
forbidden, regardless of what might happen afterwards — “good” or “bad”; it is the
conformity with moral norms which makes an action morally right [2]. Some crucial
deontological thinkers include philosophers like Kant, Pritchard, and Ross; more
recently — Kamm, Nozick, or Korsgaard [16]. Numerous decision making models
have been founded on deontological systems so far, but their analysis would be out

202 T. Zurek, D. Stachura-Zurek

of scope of this paper (for an overview, see e.g. [21]). Deontological ethical systems
have been analyzed in the light of AI (e.g., for an examination of applying Kantian
ethics in autonomous devices of the military sphere, see [22]). Since the model we
are going to introduce does not really rely on deontological premises, the discussion
of deontology will not be further extended.

3.3 Virtue ethics

The theories labeled as virtue ethics rely on the centrality of the concept of
virtue. This and the two other concepts fundamental to virtue ethics include [13]:

• arête — that is virtue, understood as aptitude / disposition / an excellent
trait of character, which makes a person good;

• phronesis — practical wisdom; the capacity to reason about virtues; a meta-
virtue on which virtuous decisions depend [9];

• eudaimonia — the end of human existence; a state of real, true happiness,
human flourishing.

As opposed to focusing on the overall good consequences, or trying to determine
what is wrong and what is right, virtue ethics is about what kind of people we want
to be and how we wish to shape our lives. The fulfilment of the human potential,
full development of oneself as a person — eudaimonia — can be seen both as
a result of virtuous life, but also as leading a virtuous life as such [16]. Modern
virtue ethics include a number of variations inspired by Aristotle, Plato, the Stoics,
Aquinas, but also philosophers like Confucius [18] [24], or Hume and Nietzsche [20].
The understanding of virtue ethics for the purpose of implementation in a decision
making mechanism in this paper will be rooted in a broadly eudaimonist ethical
framework, with the crucial concepts seen as follows:

• virtues are the foundation for decision making;

• phronesis consists in the reasoning mechanism;

• eudaimonia is achievable.

Given that we perform our research in the spirit of weak AI, applying human ethics
to artificial agents, it follows that we expect them to behave in a certain sort of
manner, so that the results would be advantageous to humans. Virtue ethics clearly
focuses on the agent as a person; the objective of such research would not be then
to create a virtuous machine imitation of a human in pursuit of its happiness, but
a device that is able to make a decision which would be considered virtuous by
a human. We hardly entertain the idea of eudaimonia as a machine’s happiness
or flourishing; it can obviously only be applied to humans, and thus in this case
would involve ensuring happiness/flourishing for humans through the decisions of
an autonomous device.

Applying Ethics to Autonomous Agents 203

4 GVR model
We will begin with a summarized discussion of the model of teleological reason-

ing from [25], further referred to as the GVR model. Firstly, the naming convention
will be presented:

• By upper case letters we denote sets;

• By lower case letters we denote propositions;

• Subscripts denote names of propositions;

• Superscripts denote names of sets;

• Greek letters denote functions;

• Other symbols will be defined later (except trivial logical and set-theory ones).

Definition 1 (State of affairs) Let S = {s0, s1, s2, ...} be a finite, non-empty set
of propositions. Each proposition represents one state of affairs. Let γ be a function
which returns 1 if a given state of affairs is true and 0 if not. One and only one
element from set S can be true: if (γ(sy) = 1), then ∀sx∈S:sx 6=sy (γ(sx) = 0). s0 is
the initial state of affairs.

We assume that all state of affairs are separate. If we would like to model a case
in which more than one state of affairs will be achievable simultaneously, then
they should be divided into separate decisions: for example, having two state of
affairs sa, sb, an agent have such available state of affairs: S = sa, sb, sa,b. Such
an approach may cause a combinatorial explosion, but since set S contains only
possible states, then the number of possibility will be significantly lower than 2n.

Definition 2 (Actions) As an action we understand an activity which carries a
transition from a certain state of affairs to another state of affairs. Actions will be
represented by propositions from set A = {a1, a2, . . . ak}.

It is worth noticing that a particular action cannot be performed in every state
of affairs. The set of all possible actions in all possible states of affairs we denote
as AS (AS ⊆ A × S). Set AS is a set of pairs AS = {asi,j , ask,w, ...} in which
asi,j = 〈ai, sj〉, ask,w = 〈ak, sw〉 (the first subscript denotes the name of an action,
the second subscript denotes the name of a situation). Each pair represents that
a given action (for example, ai) can be performed in a given state of affairs (for
example, sj). By ASj (where ASj ⊂ AS) we denote a set of actions possible to
perform in a state of affairs sj.

Function δ : AS → S returns the result of performing an action ai in a state
of affairs sj. By δ(asij) = sy where asij = 〈ai, sj〉 we denote that the result of
performing an action ai in a state of affairs sj is sy.

The presentation of our model will be illustrated by a simple running example
(adopted form [25]:

Definition 3 (Transition process) Let ε : AS × S → S be a partial function
which represents performing an action a in a state of affairs s. If δ(asi,j) = sy and
γ(sj) = 1 (the result of performing an action ai in a state of affairs sj is sy), then
performing ε(asi,j) causes changing γ(sj) = 0 and γ(sy) = 1.

204 T. Zurek, D. Stachura-Zurek

Definition 4 (Situation) By a situation xn we understand a particular state of
affairs or a result of a particular action performed in a given state of affairs. A
set of situations X is a union of sets of states of affairs and results of actions:
X = {S ∪AS}. By xn ∈ X we denote an element from set X. By Xj we denote a
set of situations available from a state of affairs sj: Sj = {sj ∪ASj} (we introduce
the concept of situation because state of affairs and actions can become decision
options and it is easier to use symbol X instead of {S ∪AS})

Definition 5 (Values) We have to separate the two meanings of the word value:
a value may be understood as a concept or as a process.

1. Value as an abstract concept which allows for the estimation of a particular
action or a state of affairs and influences one’s behaviour. V is a set of values:
V = {v1, v2, . . . vn}

2. Value as a process of estimation of the level of extent to which a particular
situation (state of affairs and / or action) x promotes a value vi. By vi(x)
we denote the extent to which x promotes a value vi. By V (X) we denote the
set of all valuations of all situations.

It is important to emphasize that values can be promoted to a certain degree by a
particular state of affairs or action: v(asi,j) represents the degree to which a value
v is promoted by a state of affairs which is the result of performing an action ai in
a state of affairs sj .

Although, similar to [25], we are not going to impose here any particular way
of representing the levels of promotion of values, we are not excluding to represent
them as numbers. For example, in [26] they were expressed by numbers from range
< 0; 1).

By V i(X) we denote the set of all possible extents to which a value vi from set
V may be promoted by any possible situation x ∈ X.

A partial order Oi = (≥;V i(X)) represents the relation between extents to
which values are promoted: vi(xn) ≥ vi(xm) means that xn ∈ X promotes a value
vi to a no less extent that xm ∈ X. If vi(xn) ≥ vi(xm) and vi(xm) ≥ vi(xn), then
extents to which a situation xn and xm promotes a value vi are equal (vi(xn) =
vi(xm)). If vi(xn) ≥ vi(xm) and vi(xn) 6= vi(xm), then vi(xn) > vi(xm).

In real-life reasoning people do not rely only on a comparison of the levels of
promotion of one value; usually, they compare the levels of promotion of various val-
ues. Theoretically speaking, they are incompatible, but practically, people compare
not only the levels of promotion of various values, but also the levels of promotion
of various sets of values.

Definition 6 (Sets of values) By V Z ⊂ V we denote a subset (named Z) of a
set of values V which consists of values: vi, vj , ... ∈ V Z .

By V xi ⊂ V we will denote a set of values promoted by a situation Xi.

Definition 7 (The level of promotion of a set of values) By V Z(xn) we de-
note a set of estimations of the levels of promotion of values constituting set V Z

by a situation xn ∈ X. If V Z = {vz, vt}, then V Z(xn) = {vz(xn), vt(xn)}.

Applying Ethics to Autonomous Agents 205

By V xi(xi) (when the upper script contains the name of a situation) we denote
a set of estimations of the levels of promotion of all values promoted by a situation
xi ∈ X.

Definition 8 (Value-extent preference) A partial order OR = (.; 2V (X)) rep-
resents a preference relation between various values and various sets of situations:
V Z(xn) . V Y (xm) means that the extent to which values from set V Z are pro-
moted by a situation xn is preferred to the extent to which values from set V Y are
promoted by a situation xm.

Properties of the OR relation:

• Relation OR is a strict partial order, hence it is irreflexive, asymmetric, and
transitive.

• If V Z is a set of values promoted by a situation x1 (V Z ⊆ V x1) and V X ⊆ V Z ,
then:

V X(x1) . V Y (x2)⇒ V Z(x1) . V Y (x2).

How to determine whether the extents to which all values promoted by one
situation are preferred to the extents to which all values are promoted by another
situation? This is not a trivial issue, because we have to balance between different
levels of promotion of different values. This problem has been extensively discussed
in [25] and [26], where two different approaches to this problem were presented.
Although we believe that this topic still requires further development, it is outside
the scope of our paper.

On the basis of order OR a new relation may be constructed:

Definition 9 (Preference) A partial order OP = (�;X) represents a preference
relation between various situations: xn � xm means that a situation xn is preferred
to a situation xm.

Preference between various situations can be derived on the basis of preferences
between the extents to which various values are promoted by the analyzed situa-
tions: If the extents to which values are promoted by a situation x1 are preferred
to the extents to which values are promoted by a situation x2, then a situation x1
is preferred to a situation x2:

V x1(x1) B V x2(x2)⇒ x1 � x2 (1)

4.1 Goals
As it has already been noticed, we need to draw a distinction between a few

different kinds of goals ([25]):

Definition 10 (Abstract goals) Abstract goals are goals represented by the min-
imal extents to which a particular situation promotes a given set of values (in our
model the valuation of any target state of affairs can be considered only with the
valuation of the action which leads to it, hence by a situation we will understand a
particular action performed in a particular state of affairs):

206 T. Zurek, D. Stachura-Zurek

• GA = {ga1, ga2, ...} — a set of abstract goals.

• By vnmin(ga) we denote the minimal extent to which the promotion of a
value vn satisfies a goal ga.

• By vn(x1) ≥ vnmin(ga) we denote that a goal ga is satisfied by a situation
x1 with respect to a value vn.

• By vn ∈ ga we denote that the minimal extent of a given value vn is declared
in a goal ga: vn ∈ ga↔ ∃vnmin(ga).

Definition 11 (Abstract unreachable goals) Abstract unreachable goals are
abstract goals where the agent desires one value to be promoted as much as possible,
while other values to be promoted no less than to a certain extent:

• GUA = {gua1, gua2, ...} — a set of abstract unreachable goals.

• By vnmin(gua) we denote the minimal extent to which the promotion of a
value vn satisfies a goal gua.

• Function ω : GUA → V returns the value which should be promoted to the
maximal possible extent. A value vm : ω(gua) = vm will be called the key
value of an abstract unreachable goal gua. Note that value vm is also the
ordinary goal of a goal gua (vm ∈ gua) and it has its own minimal extent to
which it should be promoted.

Definition 12 (Material goals) Material goals are particular situations which
satisfy given abstract goals.

• GM = {gm1, gm2, ...} — a set of material goals.

• A material goal is a particular action performed in a given state of affairs
where: gmk = (ast,m), while ast,m ∈ AS.

• By sat(gmk, gal) we denote that a material goal gmk satisfies an abstract
goal gal and is possible to achieve:

sat(gmk, gal)↔

(∀vi∈gal
(vi(ast,m) ≥ vimin(gal)) ∧ ast,m)∧

(gmk = (ast,m) ∈ AS ∧ γ(sm) = 1).

Definition 13 (Practical goal) A practical goal is a material goal which is
achievable, which satisfies the agent’s abstract goal, and which the agent is go-
ing to reach. A practical goal will be denoted as gp. The agent can only have one
practical goal at a time.

Applying Ethics to Autonomous Agents 207

4.2 Inference rules

In our model, inference is based on the defeasible inference rules (by defeasibil-
ity we understand the possibility of defeating the conclusion obtained with the use
of such rule by other, stronger, rule. For more detailed discussion of defeasibility of
inference rules see [17]). In [25], a number of argumentation schemes are proposed
which we will use as inference rules in our model. Argumentation schemes are forms
of argument which represent stereotypical patterns of human reasoning [8]. Argu-
mentation schemes in computational models are usually interpreted as defeasible
inference rules and they constitute a part of a whole argumentation framework pro-
viding a basis on which the process of reasoning is conducted. Such a framework
for GVR model was introduced in [26] along with new, fully-formalized versions of
the schemes.

Inference rules used in our model have an antecedent part and a consequence
part, separated by a double bar which stands for the sign of defeasible inference.
Below is presented a selected list of inference rules1:

AS2 Generalized practical reasoning2: If in circumstances sm performing an
action at is preferred to remaining in sm, ast,m is also preferred to any sit-
uation available from statesm, and ast,m ∈ AS, then an action at should be
performed:

∃sm∈S∃ast,m∈AS∀ask,m
:

V Oast,m(ast,m) B V Osm(sm)∧
V Oast,m(ast,m) B V Oask,m(ask,m)

ε(ast,m)

AS3 Reasoning with abstract goals: If in the current circumstances sm
achieving an abstract goal gak is possible by an action at performed in sm,
then an action ast,m becomes the practical goal gp:

∃gak∈GA∃sm∈S∃ast,m∈AS :
γ(sm) = 1∧

sat(ast,m, gak)

gp = ast,m

AS5 Goal-driven practical reasoning In the current circumstances sm, in
order to achieve the practical goal gp, an action at should be performed:
∃sm∈S∃ast,m∈AS :

(γ(sm) = 1)∧
(gp = ast,m)

ε(ast,m)

1To preserve the cohesion of designations, the names of argumentation schemes will be the
same as used in [25].

2This is a modified version of the AS2 from [26].

208 T. Zurek, D. Stachura-Zurek

4.3 Inference mechanism
[25] discusses a number of inference rules as well as a simple argumentation

framework which allows for reasoning about goals and making decisions concerning
the fulfilment of these goals. An exhaustive discussion (including the problems of
conflict resolving, etc.) of the inference rules’ structure and properties is included
in [25] and [26].

5 GVR and various ethical theories
In this section we demonstrate how various ethical theories can be represented

with the use of the GVR model.
We claim that the GVR model allows for modeling of the process of moral deci-

sion making with the use of various ethical theories. In our opinion, the utilization
of different inference rules allows for representing the reasoning processes guided
by ethical theories.

The model will be illustrated by a simple running example:

Example 1 (Running example) Suppose an autonomous car in right-hand traf-
fic. On both sides of the lane are straight lines (it is not allowed to cross those lines).
On the right side of the lane is a wall. Suppose that suddenly a child appears in
front of the car. The child is too close for the car to stop. The car has three options:

1. turn left and cross the left line, which results in breaking the traffic law;

2. turn right and hit the wall, which results in destroying the car and causing
injuries to passengers;

3. go straight, which results in hitting and possibly killing the child.

5.1 GVR and consequentialism
Consequentialism assumes that the decision options are evaluated in the light

of their expected consequences. The agent chooses the option in which the overall
evaluation of consequences is better than in other options. In our model, following
the pluralistic approach, we introduce a set of values instead the general notion
of the concept of happiness. Moreover, we believe that values do not have binary
character only, but they can be promoted to various extents. On the basis of the
above, we assume that the levels of promotion of values can be a basis of the
comparative analysis of the decision options’ consequences. Therefore, the agent
analyses the consequences of the considered options represented by the levels of
promotion of values. S/he chooses the option which promotes values to the higher
level than other ones.

Such a understanding of consequentialism can be represented with the use of the
GVR model. In the model, the decision options are represented by situations (see
definition 4). Set X represents all available states of affairs with actions allowing for
achieving them. V is the set of values; by vi(xj) we denote the level of promotion
of value vi ∈ V by situation xj ∈ X (the consequence of choosing decision option
xj interpreted in the light of value vi). Every decision option promotes every value

Applying Ethics to Autonomous Agents 209

from set V to a particular level. The agent’s decision is made by the comparison
of consequences (the levels of promotion of values) of all available decision options
(situations from set X).

Intuitively, the simplest case is when there is one situation (xk ∈ X) which
promotes every value from set V to a higher extent (or at least no lower) than
other situations from set X:

∀vl∈V ∀xj∈X∃xk∈X(vl(xk) ≥ vl(xj))

Since real life situations are usually not so simple (the same situation strongly
promotes only some values, while other ones are promoted to much lower extents),
the system needs a mechanism of determining the overall preference between the
extents of values’ promotion. The GVR model introduces order OR which rep-
resents such a preference, while [26] introduces the mechanism of calculating the
preference3.

The basic assumption of consequentialism is that the agent chooses the option
in which the overall evaluation of consequences is preferred to other options. In
order to represent such a pattern, we have to introduce a new inference rule:

AS6 Consequentialist reasoning: If in circumstances sm performing an action
at is preferred to remaining in sm and consequences of ast,m are preferred
to consequences of any other situation (action available from state sm), then
action at should be performed:

∃sm∈S∃ast,m∈AS∀x∈X :
x 6= ast,m
ast,m � x

ε(ast,m)

The above inference rule can be illustrated by the example:

Example 2 (Running example cont.) Assume the above example with the au-
tonomous vehicle. Let scar be a state of affairs in which the car is now (described
in the above example). We have 3 decision options (set X contains):

1. to turn right: asright,car

2. to turn left: asleft,car

3. to continue going straight: asstraight,car

Let’s assume three values:

1. observing the law: vlaw

2. life of pedestrian (child): vchild
3In this paper we are not going to discuss how to obtain OR and, for the sake of this study, we

assume that we obtained it with the use of the mechanism presented in [26]. For a more profound
analysis of this issue, see [25] which presents a discussion of the relations between orders from set
O and OR, and [26] which introduces the mechanism of obtaining OR on the basis of the relative
levels of promotion of values (represented by numbers) with the use of function Θ.

210 T. Zurek, D. Stachura-Zurek

3. life of passenger of the car: vpassenger

Every decision option (situation) and actual state of affairs promotes ev-
ery value to a particular extent: vlaw(scar), vlaw(asright,car), vlaw(asleft,car),
vlaw(asstraight,car), vchild(scar), vchild(asright,car), vchild(asleft,car),
vchild(asstraight,car), vpassenger(scar), vpassenger(asright,car), vpassenger(asleft,car),
vpassenger(asstraight,car).

Let us assume the following orderings in O:

• Olaw = {vlaw(asstraight,car) > vlaw(asright,car),
vlaw(asstraight,car) > vlaw(asleft,car)}
From the point of view of observing the traffic rules, going straight (the car
does not cross the straight lines) is preferred to both turning right or turning
left.

• Ochild = {vchild(asleft,car) > vchild(asstraight,car),
vchild(asright,car) > vchild(asstraight,car)}
From the point of view of the life of a pedestrian (child), both turning left
and turning right is preferred to going straight, which can result in hitting the
child.

• Opassenger = {vpassenger(asleft,car) > vpassenger(asright,car),
vpassenger(asstraight,car) > vchild(asright,car), }
From the point of view of the life of the vehicle passenger, both turning left
and going straight is preferred to turning right (there is wall on the right side,
hitting the wall can cause danger to the passenger’s life).

In order to model consequentialist reasoning, we need orders OP and OR.
Order OR contains: {V Oasleft,car (asleft,car) B V Oasstraight,car (asstraight,car),

V Oasleft,car (asleft,car) B V Oasright,car (asraight,car)}
The above, on the basis of def. 9, can be expressed as: asleft,car � asstraight,car
and asleft,car � asright,car,

Which means that turning left is preferred to both turning right and going
straight. In other words, the consequences of breaking the law (crossing the line)
are preferred to injuring the pedestrian or car passenger.

On the basis of the above and inference rule AS6, one can conclude that since
turning left is preferred to any other action from set X, then turning left should be
performed.

5.2 GVR and virtue ethics
Eudaimonist virtue ethics is rooted in ancient Greek philosophy, especially in

the works of Aristotle. Although it is probably the oldest of the major ethical
paradigms, it is the least implemented one in the light of possible application to
autonomous devices. The human-centered character of this theory and the ambigu-
ous character of the definition of virtue are the most important reasons for the lack
of successful models of virtue-based ethical decision making.

In order to create a model of virtue-based ethical decision making system, it is
necessary to introduce a clear definition of what we understand as virtue and what
does it mean that a particular decision or act exemplifies a virtue.

Applying Ethics to Autonomous Agents 211

We realize that we attempt to formalize a very abstract and obscure concept,
but we are convinced that the formalization of the concept of virtue is necessary for
the sake of our goal. The main assumptions on the basis of which we can introduce
and formalize the concept of virtue are:

• a virtue represents a human’s desired moral attitude;

• virtue should be related to values or, in other words, values represents virtues;

• a given decision option can satisfy or not a given virtue;

• a decision is ethical if it satisfies a virtue or virtues.

One can find the above assumptions as constraining the initial meaning of this
term, but we believe that such simplifications are inevitable in successful modeling
of complex real life concepts.

On the basis of the above assumptions, we can assume that a virtue can be
represented by a set of minimal extents to which the decision should promote a
particular set of values.

Definition 14 (Virtue) Let virtue will be represented by the minimal extents to
which a particular situation should promote a given set of values:

• V IRTUES = {vrt1, vrt2, ...} — a set of virtues

• By vnmin(vrt) we denote the minimal extent to which the promotion of a
value vn satisfies a virtue vrt.

• By vn(x1) ≥ vnmin(vrt) we denote that a virtue vrt is satisfied by a situation
x1 with respect to a value vn.

• By vn ∈ vrt we denote that the minimal extent of a given value vn is declared
in a virtue vrt: vn ∈ vrt↔ ∃vnmin(vrt).

In other words, virtue can be seen as a kind of abstract goal, but the goal which does
not represent the agent’s personal needs or desires, but the ideal moral attitude.

Having a model of virtue, it is possible to define when a particular decision
option (situation) will satisfy a given virtue:

Definition 15 (Satisfaction of a virtue) Assuming a situation xi ∈ X and
virtue vrtj ∈ V IRTUES, situation xi will satisfy virtue vrtj: V sat(xi, vrtj) iff
∀vn∈vrt : vn(xi) ≥ vnmin(vrtj)

The definition of satisfaction of a virtue relates to only one virtue. Let V SAT (xi)
denote that a particular decision option satisfies all virtues:

Definition 16 (Satisfaction of all virtues) We say that a particular situation
xi ∈ X satisfies all virtues iff:
V SAT (xi) iff ∀vrti∈V RTV sat(xi, vrti)

212 T. Zurek, D. Stachura-Zurek

The above definitions allow us to evaluate a particular decision in the light of
virtues, hence we can say that a particular decision exemplifies a given virtue if
this virtue is satisfied by the situation. Additionally, we can say that a particular
situation is moral if it satisfies all virtues.
The possibility of evaluation of a particular situation in the light of virtues allows
us to update the existing inference rules in order to model moral reasoning:

AS2’ Generalized moral practical reasoning: If in circumstances sm per-
forming an action at is preferred to remaining in sm, at is preferred to other
actions available from SM , ast,m ∈ AS, and ast,m satisfies all virtues, then
action at should be performed:
∃sm∈S∃ast,m∈AS∀ask,ms.t.V SAT (ask,m) :

V Oast,m(ast,m) B V Osm(sm)
V Oast,m(ast,m) B V Oask,m(ask,m)∧

V SAT (ast,m)

ε(ast,m)

AS3’ Reasoning with abstract goals: If in the current circumstances sm
achieving an abstract goal gak is possible by an action at performed in sm
and ast,m satisfies all virtues, then action ast,m becomes a practical goal gp:

∃gak∈GA∃sm∈S∃ast,m∈AS :
γ(sm) = 1∧

sat(ast,m, gak)∧
V SAT (ast,m)

gp = ast,m

The above inference rules are extended versions of the AS2 and AS3 inference rules
to which we add an extra condition which ensures that a chosen decision is moral.

The model can be illustrated by the example:

Example 3 (Running example, cont...) Suppose the above example with the
autonomous car. We would like to make a decision on the basis of a generalized
moral practical reasoning inference rule (AS2’).

In order to do that, it is necessary to declare the virtue:
Let us assume one virtue with minimal extents of three values mentioned earlier:
vrtcar = {vlawmin(vrtcar), vchildmin(vrtcar), vpassengermin(vrtcar)}.
In order to compare the extents to which particular decisions promote different

values with the virtue, we have to add the following orderings to subsets of O:

• Let Olaw additionally contain: {vlaw(asstraight,car) > vlawmin(vrtcar
vlaw(asleft,car) > vlawmin(vrtcar
vlaw(asright,car) > vlawmin(vrtcar}
From the point of view of observing the traffic rules, every decision is above
the threshold (we assumed that crossing the line is not a serious violation of
the rules).

Applying Ethics to Autonomous Agents 213

• Ochild = {vchild(asleft,car) > vchildmin(vrtcar),
vchild(asright,car) > vchildmin(vrtcar),
vchildmin(vrtcar) > vchild(asstraight,car)}
From the point of view of the life of a pedestrian (child), both turning left
and turning right promote the value to the higher extent than the threshold
(the life of a pedestrian is preserved); going straight promotes the life of a
pedestrian below the threshold (this decision can result in hitting the child).

• Opassenger = {vpassenger(asleft,car) > vpassengermin(vrtcar),
vpassengermin(vrtcar) > vpassenger(asright,car),
vpassenger(asstraight,car) > vpassengermin(vrtcar)}
From the point of view of the life of the vehicle passenger, both turning left
and going straight is above the threshold, while turning right is below (hitting
the wall can endanger the passenger’s life).

In order to make a decision, the autonomous car will use the generalized moral
practical reasoning inference rule (AS2’): The car is in the state of affairs scar ∈ S
and it has three possible decisions to make (X contains):

1. turn right: asright,car ∈ X

2. turn left: asleft,car ∈ X

3. continue going straight: asstraight,car ∈ X

Now we examine when the conditional part of AS2’ will be satisfied. It will be
satisfied if there will be available an option which is preferred to other options (1st
line) and this option will satisfy the virtue (2nd line).

Since order OR contains:
{V Oasleft,car (asleft,car) B V Oasstraight,car (asstraight,car),

V Oasleft,car (asleft,car) B V Oasright,car (asraight,car), }
then we can say that the action asleft,car is preferred to other ones (1st line of the
conditional part of AS2’ is satisfied).
Now the 2nd line of the conditional part is examined:
Because:

• vlaw(asleft,car) > vlawmin(vrtcar): the level of promotion of value Vlaw is
above the threshold of virtue vrtcar,

• vchild(asleft,car) > vchildmin(vrtcar): the level of promotion of value Vchild is
above the threshold of virtue vrtcar,

• vpassenger(asleft,car) > vpassengermin(vrtcar): the level of promotion of value
Vpassenger is above the threshold of virtue vrtcar,

then we can say that action vlaw(asleft,car) satisfies the virtue and it can be per-
formed: ε(asleft,car).

214 T. Zurek, D. Stachura-Zurek

6 Discussion
In this section we present a discussion of our approach in the light of moral

philosophy and the existing implementations of consequentialist and virtue ethics
in autonomous devices.

6.1 Moral philosophy and the model
In this section we will discuss how our model addresses the assumptions of both

analysed theories.

6.1.1 Consequentialist ethics

The key element of the consequentialist approach is that the basis of evaluation
of decisions are their consequences. Since the decisions in our model are made on the
basis of the levels to which values are promoted by decisions and their consequences
(state of affairs to which a particular action leads), then we can say that our model
fulfills the key assumption of consequentialist ethics. We have also initially assumed
that our model would be founded on a particular version of consequentialism, that
is:

• agent neutral – the implementation of our mechanism with the same knowl-
edge in different agents will produce the same results (evaluation of the con-
sequences does not change regardless of whose perspective is used);

• preferential – the basis for the decision are levels of promotion of values by
the action and state of affairs to which the action leads;

• pluralistic – we introduce a set of values instead of one overarching value
(“pleasure” or “happiness”). However, the levels of promotion of values are the
basis on which the overall evaluation of the decision is made (the decisions
are compared with the use of order OR), which is coherent with the crucial
assumption of consequentialism;

• act-based – all available decision options in a particluar situation are taken
into consideration.

6.1.2 Virtue ethics

We assumed that our model is created within the eudaimonist ethical frame-
work. In such an approach the fulfilment of the human potential, full development
of oneself as a person — eudaimonia — can be seen as a result of virtuous life.
The key concept is of such an approach is the concept of virtue. In our model, by a
virtue we understand the minimal acceptable levels of promotion of a set of values.
Such an understanding of a virtue is, obviously, a simplification of this concept, but
it allows for representing the key elements of virtue ethics in autonomous devices.

In section 3.3. we assumed that virtues are the basis for decisions and euadai-
monia is achievable. Such a view on virtues and eudaimonia implies the binary
character of this concepts: virtue can be fulfilled (or not) and eudaimonia can be
achieved (or not). Since virtuous life should lead to eudaimonia, then we can assume

Applying Ethics to Autonomous Agents 215

that if a device makes decisions which fulfill the virtues, then it achieves eudaimo-
nia (note that by eudaimonia we do not understand “eudaimonia” of a machine,
but eudaimonia of humans). In other words, if a device makes a decision which
promotes values to the levels above the thresholds established by virtue, then it is
moral, i.e., brigs about eudaimonia.

Another key concept of virtue ethics is phronesis, understood as practical wis-
dom or – more suitably in this case – the capacity to reason about virtues. In our
model this concept is represented by the whole reasoning mechanism containing
sets S, AS, X, V (X), orders O, OR, OS, inference rules, and inference mecha-
nism. On the basis of this mechanism a device can infer which decision leads to
eudaimonia, i.e., which decision satisfies all virtues.

6.2 Existing approaches to modeling ethical decision making

Firstly, we have to explain why we chose to use a knowledge-based mechanism
instead of the most popular machine learning-based ones. The main reason for
our choice is that ML-based systems function in the so-called black-box style, and
they do not allow for explaining their knowledge and decisions. It is worth noticing
that the lack of possibility of explaining decisions and the uncertainty of reasons
for the decisions made by the ML-based devices is one of the key disadvantages
of the ML-based autonomous devices, especially those which can be dangerous to
humans (the device should follow clear and understandable instructions and have
predictable behavior). On the basis of the above, we assumed that the part of the
system which is responsible for ethical decision making should be constructed on
the basis of the knowledge driven paradigm rather than the data-driven one. This
does not exclude the possibility of using ML-based mechanisms in other elements
of autonomous devices, like object detection, decision option extraction, evaluation
of decision options, etc. However, this is beyond the scope of this paper.

Although the ethics of autonomous agents is the object of debate in a num-
ber of papers, there is a very limited number of approaches implementing aspects
of consequentialist ethics and, even fewer addressing virtue ethics. The authors
of [21] introduce a comprehensive survey of various models of ethical reasoning.
They noticed that most of the models are constructed on the basis of deontologi-
cal ethics. The authors recognize 9 papers which model censequentalist ethics and
a few more implementing hybrid approaches (connecting deontological and con-
sequentialist ethics). Most of the models of consequentialist ethics are based on
the utility theory, without distinguishing other values which constitute the general
utility. In comparison, in our work, following the pluralistic theory, we have as-
sumed that consequences should be modeled in the light of a set of values whose
overall evaluation serves as the criterion in the agent’s choice. Moreover, most of
the models presented in [21] are proposed for implementation in specific devices
designed for particular tasks (e.g., household robots or the continuous prisoner’s
dilemma), without consideration of a more general perspective on the functioning
of such a device. In our approach we provide a model which is more comprehensive
and avoid narrowing it to a particular usage.

The authors of [21] claim not to recognize any “pure” implementation of virtue
ethics, but they do notice that some of them use elements of virtue ethics. However,

216 T. Zurek, D. Stachura-Zurek

since [21] do not introduce a discussion of the concept of virtue, then it is not quite
clear how they actually recognize these virtue ethics elements.

Most of the formally-oriented papers discussed in the [21] do not present an in-
depth analysis of the ethical theories, focusing on the formal and implementational
aspects only (they usually merely introduce a basic definition of the ethical theory).
In order to overcome this limitation, in our paper we have discussed our approach
in the light of different variants of ethical theories (see section 2).

Below we present several interesting models of consequentialism and virtue
ethics (some of which were discussed in [21]) with some comments referring to
our model.

The authors of [12] present the analysis of the behaviour of agents equipped
with elements of utilitarian and virtue ethics in Continuous Prisoner’s Dilemma.
Every agent in the experiment has two parameters: resource and reputation. In or-
der to represent utilitarian ethics, the authors compare the total sum of resources
of all agents: the higher the sum, the more ethical behaviour. In order to model
virtue ethics, the authors evaluate the cooperation level and compare it to the
threshold. The overall evaluation by the agent is made on the basis of both utili-
tarian and virtue ethics premises. [12] has some elements similar to our model (the
utilisation of threshold in the representation of the virtue ethics), but the general
approach is much more simplistic: the authors of [12] use only one value in the util-
itarian and virtue based perspective, there is no reasoning mechanism; the authors
do not introduce the mechanism which may allow for making decisions, but they
try to model the behaviour of agents involved in a specific kind of the Prisoner’s
Dilemma. Moreover, it is not quite clear how they understand a virtue. If the virtue
is connected with the action (as claimed by the authors), the paper could arguably
exemplify a deontological approach.

The authors of [23] present a very simplistic approach to model utilitarian ethics.
Using SOAR architecture (State, Operator, and Result) and 3 rules of robotics
(Asimov), they create a robot supporting the preparation of meals for a family. The
robot evaluates an order made by a family member in the light of health issues and
has to choose between one of the three options (obey, disobey, or partially obey
the order). Each option is evaluated by a utility score, representing how much a
given option influences health (a positive number represents that the order is good
for health, a negative means that it is not). The total sum of influence is the basis
for decision. The authors of [23] focus on the construction of the robot and fail
to introduce any broad approach to modeling a utilitarian perspective on ethical
behavior in robots. The paper lacks a discussion of the source of utility scores,
influence of other values, etc.

One of the most important models of consequentialist and virtue ethics is dis-
cussed in [6]. The model is constructed on the formal basis of the AATS+V model
(presented in [10], [4], [5], and other). The authors use the Action-Based Alter-
nating Transition System to model practical reasoning ([10], [4]). The key point of
the model is the valuation function δ which assigns the status of value (promoted
(+), demoted (-), neutral (=)) to a transition between states. Hence we may say
that the valuation function describes a change of valuation, but not valuation in
general, which in real life may be assigned both to a particular state of affairs or
to a transition between states. The authors of the above paper return to discuss

Applying Ethics to Autonomous Agents 217

this issue in [5], where they introduce the logic program ∆ which represents the
influence of transition between states on the promotion or demotion of values from
a value set.

The model of consequentialism presented in [6] replaces values with needs, based
on the Maslov’s hierarchy. The hierarchy of needs is the basis for the overall evalu-
ation of the preference between consequences. Although there are some similarities
between our model and AATS+V (see [25] for details), our approach to conse-
quentialism is different. The main difference results from a different manner of
evaluating states: in [6] (and other papers devoted to AATS+V) values can be pro-
moted or demoted by a transition between states (the promotion or demotion of a
value is relative w.r.t. a previous state), while in our model values are promoted
by a state of affairs (or action), thanks to which we evaluate the absolute, not the
relative level of promotion. On the basis of this, in our model, we can evaluate
and compare (with the use of order OR) the consequences of decisions, without
introducing additional, complex mechanisms (like the hierarchy of needs).

The work [6] also introduces a model of virtue ethics. The key point of this
approach lies in the assumption that virtue is an ordering between values. The
agent compares decision options in the light of ordered values: if two decisions
promote different values, then the agent chooses the one which promotes values
which s/he prefers. The main difference between our approach and the Bench-
Capon’s one consists in the different understanding of the concept of virtue: while
in our model virtue is a set of thresholds of the levels of values’ promotion, in
the Bench-Capon’s approach virtue is a hierarchy between values. In our opinion,
representation of virtue as a set of thresholds is much more useful, because it
prevents the autonomous device from decisions in which the strong promotion of
one value, too strongly decreases the level of promotion of the other value.

Although the model of AATS+V allows for representing the concept of threshold
([5] distinguishes two specific kinds of human attitudes: ‘maximizer’ and ‘satisfier,’
which are represented by specific rules in ∆) and provides a possibility to point
out that it is not necessary to promote some values above the particular level, the
model does not protect the system from decreasing one value too strongly.

We focus on the knowledge-based approaches to making ethical decisions, but
it is worth mentioning that there also exist some approaches to modeling conse-
quentialist ethics with the use of machine learning mechanisms: in [1] the authors
introduce the mechanism in which the system is learning the ethical decision mak-
ing. The mechanism is constructed with the use of partially observable Markov
decision processes and a reinforced learning mechanism. Since the training of the
mechanism is based on the expected results of the decisions, it can be seen as the
implementation of a kind of consequentialist ethics. A similar approach was also
presented in [14], where the authors evaluate decisions in two dimensions: norma-
tive (punishment) and evaluative (reward). Since both of the above approaches
are machine learning-based mechanisms, they work in a black-box style and they
inherit the abovementioned disadvantages of ML-based systems.

218 T. Zurek, D. Stachura-Zurek

6.3 The problem of uncertainty

The model presented in our paper has some limitations which can pose an
interesting challenge for future research. One of the most important limitations is
the assumption of the certainty of the action results. In real life, the results of a
decision are, almost always, uncertain, and hence the levels of promotion of values
by a given action also have to be uncertain.
How to deal with such a problem? In the classical decision theory, where the main
aim of the agent is to maximize the so-called utility, the concept of Principle of
Maximum Expected Utility (PMEU) was introduced [11]. In this approach, the
levels of utility of the predicted results of every decision option are multiplied by
the probabilities of their results.
Although our model does not feature the utility function but a number of levels of
promotion of values, we can use a similar approach to model the uncertainty. We
can calculate the expected level of promotion of values by multiplying the levels
to which the potential results of an action promote values by their probabilities.
However, this topic requires an in-depth analysis concerning, among others, the
subjectivity of certainty evaluation. We plan to discuss this issue in future work.

7 Conclusions

The enormous development of autonomous devices which we have been witness-
ing for some time has triggered an extremely important discussion of the problem
of ethical issues of the decisions made by such devices. This debate becomes even
more important if we consider devices whose decisions can cause serious danger,
like autonomous cars or military autonomous devices. As we have pointed out in
the introduction, we are not interested in the development of machine ethics, but
in the implementation of human ethics in machines. On the basis of such an as-
sumption, we claim that a morally behaving autonomous device should be equipped
with a mechanism which allows for making moral decisions. The creation of a for-
mal model of such a mechanism constitutes the main aim of our work. The issues
we have considered as crucial are: what we understand as moral behavior and how
moral reasoning can be represented in a machine. We claim that an attempt to
answer these questions requires an in-depth analysis of the moral philosophy the-
ories, selection and specification of the theories which can be represented in an
autonomous device, and introduction of the formal models of the chosen theories.

The main aim of our paper has been to introduce a formal and computational
model of an ethical decision making mechanism. In order to fulfill our goal, we have
presented the discussion of the main ethical theories and distinguished their specific
variants which can be implemented in autonomous devices. We have presented the
formal and computational model of these theories (with the formal background of
the GVR model [25]) with examples illustrating the decision making mechanisms.
We have also presented an in-depth discussion of our model in the light of relevant
ethical theories and some existing models of ethical reasoning.

In future work we are going to focus on three research directions. Firstly, we
intend to introduce a deeper discussion of the ethical aspects of our approach, in
particular elaborating the concepts of value, virtue, and eudaimonia, as well as

Applying Ethics to Autonomous Agents 219

relations between them. The second research direction will concern the discussion
of the problem of uncertainty of the results of an action. Another aspect of the
research will include the development of a mechanism of determining the levels to
which particular decision options promote particular values. This could possibly
lead us to examine the possibility of developing a hybrid system including machine
learning-based and knowledge-based aspects.

References

[1] David Abel, James MacGlashan, and Michael L. Littman. Reinforcement
learning as a framework for ethical decision making. In Blai Bonet, Sven
Koenig, Benjamin Kuipers, Illah R. Nourbakhsh, Stuart J. Russell, Moshe Y.
Vardi, and Toby Walsh, editors, AAAI Workshop: AI, Ethics, and Society,
volume WS-16-02 of AAAI Workshops. AAAI Press, 2016. 978-1-57735-759-9.

[2] Larry Alexander and Michael Moore. Deontological Ethics. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research
Lab, Stanford University, Winter 2020 edition, 2020.

[3] G. E. M. Anscombe. Modern moral philosophy. Philosophy, 33(124):1–19,
1958.

[4] Katie Atkinson and Trevor Bench-Capon. Practical reasoning as presumptive
argumentation using action based alternating transition systems. Artificial
Intelligence, 171(10-15):855 – 874, 2007.

[5] Katie Atkinson and Trevor Bench-Capon. States, goals and values: Revisiting
practical reasoning. In Proceedings of 11th Intl. Workshop on Argumentation
in Multi-Agent Systems, 2014.

[6] T.J.M. Bench-Capon. Ethical approaches and autonomous systems. Artificial
Intelligence, 281:103239, 2020.

[7] Jeremy Bentham. An Introduction to the Principles of Morals and Legislation.
Dover Publications, 1780.

[8] Floris Bex, Henry Prakken, Chris Reed, and Douglas Walton. Towards a
formal account of reasoning about evidence: Argumentation schemes and gen-
eralisations. Artificial Intelligence and Law, (11):125 – 165, 2004.

[9] Nicholas C. Burbules. Thoughts on phronesis. Ethics and Education,
14(2):126–137, 2019.

[10] Alison Chorley and Trevor Bench-Capon. An empirical investigation of rea-
soning with legal cases through theory construction and application. Artificial
Intelligence and Law, 13(3-4):323–371, 2005.

[11] P. Fishburn. Utility theory for decision making. Wiley, 1970.

220 T. Zurek, D. Stachura-Zurek

[12] Aditya Hegde, Vibhav Agarwal, and Shrisha Rao. Ethics, prosperity, and so-
ciety: Moral evaluation using virtue ethics and utilitarianism. In Christian
Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI-20, pages 167–174. International Joint
Conferences on Artificial Intelligence Organization, 7 2020.

[13] Rosalind Hursthouse and Glen Pettigrove. Virtue Ethics. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, Winter 2018 edition, 2018.

[14] Manel Rodriguez-Soto, Juan Antonio Rodriguez Aguilar, and
Maite Lopez-Sanchez. Guaranteeing the learning of ethi-
cal behaviour through multi-objective reinforcement learning.
https://ala2021.vub.ac.be/papers/ALA2021, 2021. ALA2021.

[15] S. Russell. Human Compatible: Artificial Intelligence and the Problem of Con-
trol. Penguin Publishing Group, 2019.

[16] Krzysztof Saja. Etyka normatywna. Universitas, 2015.

[17] Giovanni Sartor. Normative conflicts in legal reasoning. Artif. Intell. Law,
1(2–3):209–235, 1992.

[18] May Sim. Remastering Morals with Aristotle and Confucius. Cambridge Uni-
versity Press, 2007.

[19] Walter Sinnott-Armstrong. Consequentialism. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, summer 2019 edition, 2019.

[20] Christine Swanton. The Virtue Ethics of Hume and Nietzsche. Wiley-
Blackwell, 2015.

[21] Suzanne Tolmeijer, Markus Kneer, Cristina Sarasua, Markus Christen, and
Abraham Bernstein. Implementations in machine ethics: A survey. ACM
Comput. Surv., 53(6), 2021.

[22] Ozlem Ulgen. Kantian ethics in the age of artificial intelligence and robotics.
Questions of International Law, 43:59–83, 2017.

[23] Chien Van Dang, Tin Trung Tran, Ki-Jong Gil, Yong-Bin Shin, Jae-Won Choi,
Geon-Soo Park, and Jong-Wook Kim. Application of soar cognitive agent
based on utilitarian ethics theory for home service robots. In 2017 14th Inter-
national Conference on Ubiquitous Robots and Ambient Intelligence (URAI),
pages 155–158, 2017.

[24] Jiyuan Yu. The Ethics of Confucius and Aristotle: Mirrors of Virtue. Rout-
ledge, 2007.

[25] Tomasz Zurek. Goals, values, and reasoning. Expert Systems with Applications,
71:442 – 456, 2017.

Applying Ethics to Autonomous Agents 221

[26] Tomasz Zurek and Michail Mokkas. Value-based reasoning in autonomous
agents. International Journal of Computational Intelligence Systems, 14:896–
921, 2021.

Assessment of Attractiveness and
Trust in Relation to Personality
Traits — Literature Review and
Research Proposal

Bernadetta Bartosik∗

Grzegorz Marcin Wójcik

1 Introduction

Faces are an inseparable element of every person’s everyday life. As we walk
down the street, we pass many people we may or may not know. Welcome each
other with a nod of the head or a smile. Young people are taking selfies more
and more often and sharing them on social media. Facial recognition is part of
everyday life and is developed from the first moments of life [4], [23], [28]. In order
to obtain multidimensional information about a person, even a brief look at the face
is enough. The success of social interactions largely depends on how we perceive the
person. One can read a lot of information from the face, ranging from age, gender,
emotions, health condition to the assessment of attractiveness, trust, dominance
[42], [25], [30] ,[24]. On their basis, people often make decisions or trust [8], [37] .

In general, trust can be described as a voluntary action, which in its conse-
quences may be associated with a favorable or unfavorable result of the conduct of
others [41]. Information read from the face is involved in the confidence analysis
process. Attractiveness, as one of many arguments, has a great influence on the de-
cision. One may suspect that the assessment of attractiveness depends on general,
more external signs, while credibility is multifaceted and also applies to internal
personality traits. It is therefore highly likely that in the event of insufficient infor-
mation, credibility will be inferred from the attractiveness of a face, which we are
always able to determine. Research shows that attractive people will be more often
assessed as trustworthy [33], have more positive personality traits [13], [16], are
better treated by others, have higher salaries [26]. Female faces are more attractive
than male faces [32]. It has been proven that the emotional expression of the face
also has a very significant influence on the assessment of trust. People who smile
and display positive emotions will be considered more credible [10], [35]. Trust in

∗Corresponding author — bernadetta.bartosik@mail.umcs.pl

223

224 B. Bartosik, G. M. Wójcik

others has a great impact on the functioning of various types of Internet activity.
Sellers with a credible face have a greater number of orders / reservations [17].
This topic is very well presented in research based on the “trust game”, where the
participant can invest money at a profit or loss. It was noticed that a large number
of participants spend more on offers / partners whose face is trustworthy [12], [38].
Moreover, the assessment of trust has a particular impact on starting cooperation
with someone [42]. It has been proven that criminals whose face looks credible are
more likely to receive lower penalties [2], [40].

Facial recognition and perception are the result of interactions between many
neural processes responsible for facial perception [9], [20]. Looking at the face of
another person, we can immediately deduce the basic features and make the right
decisions. This is especially important in life-threatening situations. The charac-
teristics related to gender and age are recognized the earliest, while the brain then
processes identity [14], [15]. The earliest ERP element that appears after face ex-
posure is the N170 potential [7], [21] (Jeffreys, 1996). It is related to the structural
encoding of the face in the temporo-occipital regions. The increase in the ampli-
tude of this potential was recorded for inverted faces [22]. It can also be registered
by processing social information relating to social categorization and racial prej-
udice [3], [29]. As already mentioned, identity is processed by the brain later and
is recorded within the limits of the N250 potential [39]. In various ways, about
300–600 ms after the stimulus presentation, there are signals related to cognitive
processing [11].

In assessing the credibility of other people, great importance is attached to the
amygdala, which is associated with the processing of lower-level emotions, especially
negative ones that may interact with other structures in order to quickly analyze
threats [31], [36]. The amygdala may be activated less in the case of credible-
looking faces, or more in the opposite case [19]. Damage to the amygdala causes
disturbances in the correct assessment of trust, which means that people with this
dysfunction are more likely to positively assess people who are untrustworthy [1].

The face is most often judged by people and it is on its basis that the first
judgments can be made. Therefore, a future study is presented below, the aim of
which will be to find the relationship between the assessment of attractiveness and
the assessment of trust of the real faces shown in the photos and the personality
trait of the person making the assessment of these features. No two people are alike
in the world. Despite the external similarity, people differ in their behavior, way of
thinking or the way of receiving and experiencing emotions. Personality traits are
relatively constant properties that can be measured. In the planned study, these
features will be determined by psychological tests for each subject and compared
with the ratings issued for attractiveness and trust in the presented photos of the
face. It is presumed that people who have similar personality traits will give similar
assessments, e.g. neurotic people will be less trusting.

2 Tools
The experiment will be developed on the basis of photos of female and male

faces. Due to the fact that artificial faces have an impact on the absolute levels
of perceived credibility, it was decided to use databases containing photos of real

Assessment of Attractiveness and Trust in Relation to Personality Traits. . . 225

people [5]. The photos were downloaded from online photo databases that make
their resources available for research purposes. The following criteria were used
when selecting the bases: it should contain photos of men’s and women’s faces,
people in the photos should be of different ages and races, faces should be presented
from the front, faces should not show emotions. Develpoment Emotional Faces
Stimulus Set (DEFSS) and Mulit-Racial Mega-Resolution (MR2) were selected
from among many databases. These are databases characterized by great care of
the photos taken and good resolution. DEFSS is a collection of 404 photos of
people between the ages of 8 and 30. It is a base showing faces expressing emotions,
including happiness, sadness, anger, and lack of emotions. The photos are verified
by the respondents in terms of the emotions presented [27]. MR2 is a collection
that includes photos of 74 people of different races between 18 and 25 years of age.
The faces of the models do not convey any emotions. The collection was verified by
the respondents assessing, among others, age, sex, race, attractiveness, and trust
[34].

From the above-mentioned databases, 100 photos were selected, 50 of which
show female faces and 50 are male faces. All photos show faces with neutral expres-
sions of different origins (49 — European, 31 — African, 20 — East Asian) shown
from the front. Research focuses on assessing attractiveness and trust. Given that
not all photos have verified these characteristics, a survey was conducted in which
85 UMCS computer science and cognitive science students assessed it. For each
photo, three questions were displayed: “How attractive is the person in the photo?”,
“How can you trust the person in the photo?”, “What is the gender of the person in
the photo?” The first two questions were answered using a five-point Likert scale,
where 1 means not at all and 5 means very much. The responses were statistically
analyzed and four groups of photos were distinguished: attractive and trustwor-
thy, unattractive and untrustworthy, attractive and untrustworthy, unattractive
and trustworthy. Some of these groups were more numerous than others. For this
reason, 6 photos with the highest scores by students were selected from each group
(Figure 1). The resulting set will be used to design the EEG experiment.

Personality traits will be determined through psychological tests. Two tests will
be used, which are the NEO PI-R Personality Inventory and the IVE Impulsivity
Questionnaire. The first one is one of the most frequently used for research. It was
created by McCrae and Costa in the nineties, and translated into Polish by Siuta.
This test is based on the five-factor model of personality (Table 1).

Initially, it consisted of three factors and each of them had its own subscale.
Currently, the personality inventory consists of five factors with their own subscales
(Table 2), which constitute the most general dimensions for determining personality
characteristics. The test that will be used contains 240 questions that must be
answered on a five-point scale from 0 to 4 depending on how true the question is
in relation to the participant’s feelings.

The second test is the Impulsiveness Questionnaire created by Hans J. Eysenck
and Sybil B. G. Eysenck. It consists of 54 questions to which the respondent may
answer “yes” if he agrees with the statement or “no” if he does not agree with
it. Thanks to IVE, dimensions such as impulsivity (determining the pathological
aspect of risky behaviors), empathy (characteristic of people who are not indifferent
to the emotions of others), a tendency to take risks.

226 B. Bartosik, G. M. Wójcik

Figure 1: Collection of 24 photos divided into groups: A — unattractive and trust-
worthy, B — attractive and trustworthy, C — attractive and untrustworthy, D —
unattractive and untrustworthy. Photos taken from the following databases: DEFSS
[27] and MR2 [34]

3 Procedure

The study will be carried out in the laboratory of the Department of Neuroin-
formatics and Biomedical Engineering at the Maria Curie-Skłodowska University
using an amplifier recording cortical activity through 256 channels (HydroCel GSN
130, EGI) with a frequency of up to 500 Hz. The study will be designed to ob-
tain psychological data from participants and the EEG signal. For this purpose,
the whole thing has been divided into two stages. In the first, participants will
be asked to remotely complete two psychological questionnaires. The NEO-Pi-R
test contains 240 questions that should be answered on a scale of 0 to 4, where
0 means that you do not agree with the statement, and 4 means that you agree
with it. In the IVE test, the participant will answer 54 questions, in which he will
choose one of the two possible answers “yes” or “no”. The second stage will be held
stationary. Participants will take part in an experiment in which they will assess
attractiveness and confidence, and make a gender selection. On the screen where
the participants will be sitting, there will be photos with faces of men and women of
different ages and races. These photos were selected from a larger group of photos.
Each respondent will assess whether the person in the photo is:

• attractive/unattractive by answering the question “How attractive is the per-
son in the photo?”. The answer to this question will be on a scale from 1 to
5, where 1 means not at all and 5 very much,

Assessment of Attractiveness and Trust in Relation to Personality Traits. . . 227

• trustworthy/not trustworthy by answering the question “To what extent are
you able to trust the person in the photo?” In this case, the participant will
make a choice using the same scale as for the attractiveness assessment,

• a woman/man answering the question “What gender is the person in the
photo?”.

Each time the attempt will start with a black screen displayed for 300 ms,
followed by a fixation point with a variable display time, randomly selected in
the 100-1200 ms range. After the fixation point disappears, the subject will see a
screen with an appropriate question, and after 1200 ms a photo of the face will
be displayed, which will disappear only after answering. The maximum time for
displaying the photo screen is 20000 ms (Figure 2). Photo stimuli will appear in
random order.

After the end of the experiment, each participant will be photographed using
the Geodesic Photogeammetry System (GPS). The station has 11 cameras in each
corner of the station and each photo shows a different fragment of the cap. Thanks
to this, it is known where the individual electrodes are, and using the appropriate
software, you can create a model of the brain.

Table 1: Description of the dimensions of the big five
Personality factors Description
Neuroticism Described by traits such as anger, fear, guilt.

It is the reverse of emotional stability. Neu-
rotic people often deal with stress, they con-
trol their behavior less often, they do not feel
well in company.

Extroversion Extroverted people are open, cordial, friendly,
energetic, willing to make new friends and look
for new experiences. The opposite is introver-
sion.

Openness It characterizes people looking for new life
experiences, tolerant and curious about the
world, new tasks are not a problem for them
and they are willing to undertake them. People
with low openness to experiences are charac-
terized by, among other things, conservative-
ness and conventionality.

Agreeableness It is presented as a positive attitude to-
wards people. Agreeable people are character-
ized by honesty, trust, and a willingness to
bring disinterested help. The opposite is self-
centeredness.

Conscientiousness It is the attitude towards goal-oriented action.
Conscientious people are usually persistent in
pursuing their goals, meticulous, reliable, and
tend to be perfectionist and workaholic.

228 B. Bartosik, G. M. Wójcik

4 Summary

The above work presents the literature in which it is noticed that judgments
of the degree of trust in the face are strongly correlated with attractiveness. It is
not without reason that the saying “When they see you, they write you like that”.
From the face you can read a lot of important information about gender, age and
intentions. Some of this information is processed very quickly, thanks to which the
person is able to quickly make the right decisions. According to research, the first
signals may appear even around 33 ms after the stimulus has occurred [6] [18]. The
amygdala plays a big part in the credibility assessment process, as its damage is as-
sociated with an incorrect assessment of the credibility of the face. In the proposed
study, the faces presented to participants will be subject to an assessment of attrac-
tiveness and degree of trust. Apart from the facial assessment, the participants will

Table 2: NEO PI-R Personality Inventory. Division into subscales
Type of test Personality factors Component factors

Neo-Pi-R

Neuroticism

Anxiety
Angry hostility
Depression
Self-consciousness
Impulsiveness
Vulnerability

Extroversion

Warmth
Gregariousness
Assertiveness
Activity
Excitement seeking
Positive emotions

Openness

Fantasy
Aesthetics
Feelings
Actions
Ideas
Values

Agreeableness

Trust
Straightforwardness
Altruism
Compliance
Modesty
Tendermindedness

Conscientiousness

Competence
Order
Dutifulness
Achievement striving
Self-discipline
Deliberation

Assessment of Attractiveness and Trust in Relation to Personality Traits. . . 229

Figure 2: Diagram of a single experiment sample

complete psychological tests that will allow to determine their personality traits. It
is planned to evaluate the course of ERP during the assessments and to identify the
most active brain areas. Based on the analyzed signal and the individual differences
of the respondents, an attempt will be made to determine the relationship between
them.

References

[1] Adolphs, R., Tranel, D., & Damasio, A. R. (1998). The human amygdala in
social judgment. Nature, 393(6684), 470–474.

[2] Ancāns, K., & Austers, I. (2018). The Influence of Face Trustworthiness on
Judgments in Forensic Context. Baltic Journal of Psychology, 19.

[3] Amodio, D. M., Bartholow, B. D., & Ito, T. A. (2014). Tracking the dynamics
of the social brain: ERP approaches for social cognitive and affective neuro-
science. Social Cognitive and Affective Neuroscience, 9(3), 385-393.

[4] Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R., & Livingstone, M.
S. (2017). Seeing faces is necessary for face-domain formation. Nature neuro-
science, 20(10), 1404.

[5] Balas, B., & Pacella, J. (2017). Trustworthiness perception is disrupted in
artificial faces. Computers in Human Behavior, 77, 240–248.

230 B. Bartosik, G. M. Wójcik

[6] Bar, M., Neta, M., & Linz, H. (2006). Very first impressions. Emotion, 6(2),
269.

[7] Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Elec-
trophysiological studies of face perception in humans. Journal of cognitive
neuroscience, 8(6), 551–565.

[8] Bonnefon, J. F., Hopfensitz, A., & De Neys, W. (2017). Can we detect coop-
erators by looking at their face?. Current Directions in Psychological Science,
26(3), 276–281

[9] Bruce, V., & Young, A. (1986). Understanding face recognition. British journal
of psychology, 77(3), 305–327

[10] Calvo, M. G., Álvarez-Plaza, P., & Fernández-Martín, A. (2017). The contri-
bution of facial regions to judgements of happiness and trustworthiness from
dynamic expressions. Journal of Cognitive Psychology, 29(5), 618–625.

[11] Calvo, M. G., Gutiérrez-García, A., & Beltrán, D. (2018). Neural time course
and brain sources of facial attractiveness vs. trustworthiness judgment. Cog-
nitive, Affective, & Behavioral Neuroscience, 18(6), 1233–1247.

[12] Chang, L. J., Doll, B. B., van’t Wout, M., Frank, M. J., & Sanfey, A. G. (2010).
Seeing is believing: Trustworthiness as a dynamic belief. Cognitive psychology,
61(2), 87–105.

[13] Dion, K., Berscheid, E., & Walster, E. (1972). What is beautiful is good.
Journal of personality and social psychology, 24(3), 285.

[14] di Oleggio Castello, M. V., & Gobbini, M. I. (2015). Familiar face detection
in 180ms. PLoS One, 10(8).

[15] Dobs, K., Isik, L., Pantazis, D., & Kanwisher, N. (2019). How face perception
unfolds over time. Nature communications, 10(1), 1–10.

[16] Eagly, A. H., Ashmore, R. D., Makhijani, M. G., & Longo, L. C. (1991). What
is beautiful is good, but. . . : A meta-analytic review of research on the physical
attractiveness stereotype. Psychological bulletin, 110(1), 109.

[17] Ert, E., Fleischer, A., & Magen, N. (2016). Trust and reputation in the sharing
economy: The role of personal photos in Airbnb. Tourism Management, 55,
62–73.

[18] Freeman, J. B., Stolier, R. M., Ingbretsen, Z. A., & Hehman, E. A. (2014).
Amygdala responsivity to high-level social information from unseen faces.
Journal of Neuroscience, 34(32), 10573–10581.

[19] Haas, B. W., Ishak, A., Anderson, I. W., & Filkowski, M. M. (2015). The
tendency to trust is reflected in human brain structure. Neuroimage, 107,
175–181.

[20] Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human
neural system for face perception. Trends in cognitive sciences, 4(6), 223–233.

Assessment of Attractiveness and Trust in Relation to Personality Traits. . . 231

[21] Itier, R. J., & Taylor, M. J. (2004). N170 or N1? Spatiotemporal differences
between object and face processing using ERPs. Cerebral cortex, 14(2), 132–
142

[22] Itier, R. J., & Taylor, M. J. (2002). Inversion and contrast polarity reversal
affect both encoding and recognition processes of unfamiliar faces: a repetition
study using ERPs. Neuroimage, 15(2), 353–372.

[23] Jessen, S., & Grossmann, T. (2019). Neural evidence for the subliminal pro-
cessing of facial trustworthiness in infancy. Neuropsychologia, 126, 46–53.

[24] Jones, B. C., Little, A. C., Penton-Voak, I. S., Tiddeman, B. P., Burt, D.
M., & Perrett, D. I. (2001). Facial symmetry and judgements of apparent
health: Support for a “good genes” explanation of the attractiveness–symmetry
relationship. Evolution and human behavior, 22(6), 417–429.

[25] Kościński, K. (2007). Facial attractiveness: General patterns of facial prefer-
ences. Anthropological Review, 70(1), 45–79.

[26] Langlois, J. H., Kalakanis, L., Rubenstein, A. J., Larson, A., Hallam, M., &
Smoot, M. (2000). Maxims or myths of beauty? A meta-analytic and theoret-
ical review. Psychological bulletin, 126(3), 390.

[27] Meuwissen, A. S., Anderson, J. E., & Zelazo, P. D. (2017). The creation and
validation of the developmental Emotional Faces Stimulus Set. Behavior re-
search methods, 49(3), 960–966

[28] Mondloch, C. J., Gerada, A., Proietti, V., & Nelson, N. L. (2019). The influence
of subtle facial expressions on children’s first impressions of trustworthiness
and dominance is not adult-like. Journal of experimental child psychology, 180,
19–38.

[29] Ofan, R. H., Rubin, N., & Amodio, D. M. (2011). Seeing race: N170 responses
to race and their relation to automatic racial attitudes and controlled process-
ing. Journal of Cognitive Neuroscience, 23(10), 3153–3161.

[30] Oosterhof, N. N., & Todorov, A. (2008). The functional basis of face evaluation.
Proceedings of the National Academy of Sciences, 105(32), 11087–11092.

[31] Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: from
a’low road’to’many roads’ of evaluating biological significance. Nature reviews
neuroscience, 11(11), 773–782.

[32] Rhodes, G., Chan, J., Zebrowitz, L. A., & Simmons, L. W. (2003). Does sexual
dimorphism in human faces signal health?. Proceedings of the Royal Society
of London. Series B: Biological Sciences, 270(suppl_1), S93–S95

[33] Shinners, E. (2009). Effects of the “what is beautiful is good” stereotype on
perceived trustworthiness. UW-L Journal of Undergraduate Research, 12, 1–5.

[34] Strohminger, N., Gray, K., Chituc, V., Heffner, J., Schein, C., & Heagins, T. B.
(2016). The MR2: A multi-racial, mega-resolution database of facial stimuli.
Behavior research methods, 48(3), 1197–1204.

232 B. Bartosik, G. M. Wójcik

[35] Sutherland, C. A., Young, A. W., & Rhodes, G. (2017). Facial first impressions
from another angle: How social judgements are influenced by changeable and
invariant facial properties. British Journal of Psychology, 108(2), 397–415.

[36] Tamietto, M., & De Gelder, B. (2010). Neural bases of the non-conscious
perception of emotional signals. Nature Reviews Neuroscience, 11(10), 697–
709.

[37] Todorov, A., Olivola, C. Y., Dotsch, R., & Mende-Siedlecki, P. (2015). Social
attributions from faces: Determinants, consequences, accuracy, and functional
significance. Annual review of psychology, 66, 519–545.

[38] Van’t Wout, M., & Sanfey, A. G. (2008). Friend or foe: The effect of implicit
trustworthiness judgments in social decision-making. Cognition, 108(3), 796–
803.

[39] Werheid, K., Schacht, A., & Sommer, W. (2007). Facial attractiveness modu-
lates early and late event-related brain potentials. Biological psychology, 76(1–
2), 100–108

[40] Wilson, J. P., & Rule, N. O. (2015). Facial trustworthiness predicts extreme
criminal-sentencing outcomes. Psychological science, 26(8), 1325–1331.

[41] Yamagishi, T., Kanazawa, S., Mashima, R., & Terai, S. (2005). Separating
trust from cooperation in a dynamic relationship: prisoner’s dilemma with
variable dependence. Rationality and society, 17(3), 275–308.

[42] Zebrowitz, L. A., & Montepare, J. M. (2008). Social psychological face per-
ception: Why appearance matters. Social and personality psychology compass,
2(3), 1497–1517.

Liquid State Machines for
Real-Time Neural Simulations

Karol Chlasta∗

Grzegorz Marcin Wójcik

1 Introduction

Our brain consists of approximately a hundred billion neurons. The data pro-
vided by different authors have led to a broad range of 75–125 billion neurons in
the whole brain [15]. Neurons are organised in microcircuits, also known as neural
columns. They differ by purpose in the human brain [8].

Excitable media, as introduced by [11] in the theory of synchronous concur-
rent algorithms, provide a great framework for computations. A new approach to
microcircuit computing was suggested by Maass [16]. In Maass’s Liquid State Ma-
chine (LSM) theory, the brain, or its fragments, are treated as a liquid. The model
provides an alternative to the Turing machine [19]. Moreover, a mathematical anal-
ysis shows that there are in principle no computational limitations of liquid state
machines [16].

Neural networks are a great tool for modelling different systems, including
complex biological or technological systems. Artificial neural networks facilitate
biomedical signal processing, biomedical data analysis and interpretation, as well
as models for the analysis of system behaviour, including the prognosis of results
of selected activities [20].

Several successful applications of the LSM framework have been delivered in the
area of artificial neural networks, or to solve engineering tasks such as the design
of nonlinear controllers [18]. Moreover, we know that cortical microcircuits seem to
be very useful for computing on perturbations [24].

Direct observation of neuronal activity of individual neurons is not possible
given the current state of art in human neuroimaging [1]. To achieve brain-scale
simulations and to investigate emergent properties of brain circuits we need better
building blocks to simulate the whole neural circuits with higher fidelity.

There has been an increased development in the performance and capability of
neural simulations in the past years. As a result the simulator and supercomputer
technology have now developed to the point that the actual process of setting up
and simulating a realistic neural model is now practical [9].

∗Corresponding author — karol@chlasta.pl

233

234 K. Chlasta, G. M. Wójcik

In spite of that some key challenges remain. One of them is that the number
of synaptic connections in the neural models offering higher fidelity have shown to
exceed the current memory capacity of hardware that is available to researchers
[14]. The other major challenge to the simulation of neuronal networks is handling
both the computations and data generated by the large number of synaptic inputs
to a single neuron, and scaling these neurons to the larger structures [13].

This paper presents a simulation framework for spiking neural network simula-
tion and provides a simple, extensible retina-LGN-cortex model. We also leverage
a novel distributed simulation setup, with in-memory processing of the readout sig-
nal. We also extend the prior work of [23], in building a higher fidelity bio-inspired
visual system resembling mammalian visual cortex. The new model has a more
complex retina, allowing to process input patterns generated by viewing a resolu-
tion of a MINST dataset [6] in near real-time. We achieve simulation results from
four LSM columns, and calculate the Euclidean distance of states in each of the
four columns of the system to illustrate the differences in spiking patterns.

We present a model that helps in understanding the signal processing phenom-
ena within each column, and is extensible for further research on signal processing
in multiple hypercolumns of the brain.

1.1 Liquid State Machines

In contrast to common computational models, Maass’s Liquid State Machine
introduced in 2002 [16] does not require information to be stored in stable states
of a computational system. In the same year a Liquid Computer term was coined
as a novel strategy for real-time computing on time series [18]. Such a computer
consists of the four main components:

• Input i(·), a continuous input stream.

• Liquid column, or a filter LN that maps the input into function Y N (t):

Y N (t) = (LN i)(t). (1)

• Memory-less readout map mN .

• Output o(t):

o(t) = mN (Y N (t)). (2)

In Maass’s LSM architecture described in [16] the function of time series i(·)
is injected as input into the liquid column LN , creating at time t the liquid state
Y N (t), which is transformed by a memory-less readout map mN to generate an
output o(t).

Maass introduced two macroscopic properties of LSM, a Separation Property
(SP) and an Approximation Property (AP), that can provide improvements with
respect to classification applications. SP measures the dispersion between projected
liquid states from different classes, whereas the AP indicates the concentration of
the liquid states that belong to the same class.

Liquid State Machines for Real-Time Neural Simulations 235

The architecture is under active development. Recently [22] proposed to use
a group of locally connected LSM reservoirs to form an ensemble of liquids. This
approach could simulate higher levels of connectivity in LSMs that are in close
proximity, and lower levels of connectivity for these that are spatially further apart.

1.2 Real-time processing
We propose to combine the LSM architecture with Apache Spark [27]. Apache

Spark can be used as a distributed, fault tolerant data processing engine for extract-
ing insights at scale with near-real time speeds [28]. It is an open source computing
framework that unifies streaming, batch, and interactive big data workloads. We
use it to improve the analysis of outputs generated by neural columns simulated
with GENESIS [3] programming framework.

The fundamental building block of Spark architecture is Resilient Distributed
Dataset (RDD). RDDs are in-memory objects on which all the operations on Spark
platform are performed, and it happens in a distributed way [26].

An RDD is a collection of entities, similar to rows or records. RDD functionality
makes the distributed processing possible by allowing to split the data it contains
across all the data nodes of a Spark cluster. RDDs are immutable; once created they
cannot be edited, updated, or appended to. They are considered resilient because
they tolerate node failures within the cluster, and can be reconstructed in case of
a node failure [26, 29].

From the programming perspective they are similar to Java collections, but
under the Spark layer they are partitioned and distributed across multiple com-
puting nodes. Unlike in the case of Hadoop and HDFS, Spark RDDs represent the
data in-memory for each of the machines in the cluster. The distribution of the
data across the computational nodes allows Spark to process the data in parallel.
Several processes can be run on an individual subset of data by a cluster [29].

RDDs can be mutated (be appended or changed). There are only two operations
that are permitted on an RDD: [28]:

• Transformation (resulting in creation of a new RDD, with all the edits that
are needed).

• Action (or request for a result, which causes Spark to execute a set of trans-
formations defined for a dataset).

Spark follows lazy evaluation of operations by keeping a record of the series of
transformations requested by the user on the dataset. It groups the transformation
in an efficient way when an action is requested. This allows an RDD to be recon-
structed even if the node it lives on crashes. RDD can be created when a file is
read, or a transformation of another RDD is called. Each RDD keeps metadata in
which it keeps track of where it came from. This feature is called the RDD lineage,
and it allows an RDD to reconstruct itself through re-performing all the recorded
transformations [26].

Since its beginnings, the platform offers machine learning libraries. Spark 1.x
provides support for ML with spark.mllib. Spark 2.x, the current version works
with spark.ml and it offers an entirely new set of APIs for developers, which can
work with data frames, and not directly with Resilient Distributed Datasets. The

236 K. Chlasta, G. M. Wójcik

other advantage of the platform for machine learning is that Spark offers libraries
for hyper-parameter tuning, allowing to choose the best model for a given use
case [17]. Moreover, the recent developments in the Spark project increased the
execution speed on the platform between 10 and 100 times [29].

2 Materials and methods

2.1 Signal processing model
We propose a bio-inspired model of a visual system that consists of two main

modules. Our approach is in line with the LSM architecture proposed by Maass
[16]. There are two main components of our model:

1. Input (Retina, as presented in Fig. 1).

2. Liquid (Cortex, built of four identical LSM columns, each as presented in
Fig. 2).

Figure 1: Retina of the proposed visual system with the stimulating patterns (In-
put)

All the simulations discussed in this paper were programmed using GEneral
NEural SImulation System (GENESIS) [4]. All the neurons used in the simulations
were built according to the Hodgkin-Huxley model [10].

Similar to the old model presented in [23], our new Hodgkin-Huxley Liquid State
Machine (HHLSM) model uses the same high fidelity multi-compartmental neurons.
The soma of each neuron uses biologically similar voltage-activated sodium and
potassium channels. We build on a well known conductance-based model describing
how action potentials in neurons are initiated and propagated in electrical circuit
[25]. The GENESIS parameters we used in our simulations can be organised into
four groups:

• Main resistances Rx = 0.3 Ω, Rn = 0.33 Ω.

Liquid State Machines for Real-Time Neural Simulations 237

Figure 2: Structure of the LSM column, a fundamental computational microcircuit
of our model (Liquid)

• Capacitance Cn = 0.01 F and potential incl. En = 0.07 V, Ek = 0.0594 V
(soma compartment), Ek = 0.07 V (dendrite).

• Conductance GK = 360 Ω−1 and GNa = 1200 Ω−1 (for each of the ionic
channels).

• Physical characteristics, a soma with circular shape and diameter of 30 µ,
dendrites and axon length of 100 µ.

The exact values for these parameters were achieved experimentally by [25] to pro-
vide a high biological fidelity of the model. A detailed description of the Hodgkin-
Huxley model can be found in [10].

The Retina was built on a 28 × 28 square-shaped grid and divided into four
patches (2× 2). Each patch is connected to one of the four HHLSM columns which
simulate Lateral Geniculate Nuclei (LGN), and later the ensemble of cortical micro-
circuits. The retinal cells are only connected to the LSM column through the LGN
layer. Each HHLSM consists of 1024 neural cells placed in a cuboid of 8×8×16. The
structure of each column in the models is the same (Fig. 2). The model contains
four columns in total that form the Liquid stimulated by Retina.

There are 90% of excitatory connections established among layers and neurons
of each layer and 10% of inhibitory connections. Additionally, Layers L6 of LSM
columns are connected with LGNs of other HHLSMs in the same way (i.e. with
the probability of 10%), simulating the corticothalamic feedback. For simplicity,
we did not implement the pathway of the possible inter-column connections. Each
connection in the model is characterised with a delay parameter and random weight.
We can treat the Liquid as a single hyper-column made of four independent neural
columns, a part of periodic structure of the simulated cortex.

238 K. Chlasta, G. M. Wójcik

Figure 3: High level simulation setup including GENESIS and Spark components
of the framework

2.2 Experimental setting

We performed all the simulations described in this paper using a simple Spark
cluster with a single master node, and two worker nodes. The system was built
around computing resources available on a free Google Colaboratory Cloud plat-
form [2]. The machine was equipped with the Intel Xeon processing units running
at 2.30 GHz, using 256KB L2 Cache in a single computing component, and having
2 cores per chip. The 64-bit system had 12 GB of RAM, and worked under the
control of Linux (Ubuntu 18.04.5 LTS) with the kernel version of 4.19.112+. We
installed the latest Spark-3.0.2 with hadoop 2.7 using OpenJDK Runtime Environ-
ment 11.0.10. The model was implemented in GEneral NEural SImulation System
GENESIS v.2.41. Both results and source code for the simulations are available
on GitHub repository2. Fig. 3 presents a diagram with simulation setup, includ-
ing GENESIS and Spark components, along-site their relative roles in the overall
approach.

3 Results

We created a system consisting of 784 retina cells and a Liquid State Machine
organised into 4 computational columns, 1024 cells each. In contrast to the original
Maass’s LSM using integrate and fire neurons, our architecture is built of a more
biologically realistic model of neural cells proposed by Hodgkin-Huxley.

1GENESIS v.2.4 https://github.com/dbeeman/genesis-2.4beta-files.
2LiquidComputer https://github.com/KarolChlasta/LiquidComputer.

https://github.com/dbeeman/genesis-2.4beta-files
https://github.com/KarolChlasta/LiquidComputer

Liquid State Machines for Real-Time Neural Simulations 239

In total our system was built using 4880 artificial neurons. They simulated
a simple visual system, processing input signals through a square-shaped grid of
28x28 pixels. We stimulated the retinal cells with a pattern resembling the digit of
0. The input signal (Fig. 1) was encoded in the Liquid state, and a unique pattern
of spikes was observed in each of four LSM columns, as visualised in Fig. 6 and 7,
and measured in Table 1.

Figure 4: Number of spikes generated by Retina (Input) stimulation for a 2D
(28x28) setup within the simulation time of 1 second

Fig. 4 and 5 present two views of the spiking response of our retina grid. Retinal
cells chosen for each pattern were stimulated with random spike trains with the
average rate of 200 Hz. The spikes marked in black were triggered by input signals
simulating the pattern of ’shorter part’ of the 0 shape (2 ∗ 12 stimulating spike
trains), whereas the spikes marked in blue were generated by the ’longer parts’
of the 0 shape stimulating our retina model (2 ∗ 22 stimulating signals). This is
important to observe, because it shows that our retina response generates expected
signals when stimulated, and these signals can be passed to the subsequent parts
of the system, as presented in Fig. 2.

Fig. 6 and 7 present cumulative spiking activity for each of the LSM columns. We
performed a 2D kernel density estimation to visualise the structure of cumulative
spikes with contour lines. We observe different dynamics of these spikes generated
within each LSM column. Such behaviour is typical for LSMs, and can be measured
for each column, using their vectors of states.

Finally, Table 1 presents the matrix of euclidean distances between four vectors
of states of each LSM column during the time of experiment. This different pattern
is an important feature for the downstream processing of visual information be-

240 K. Chlasta, G. M. Wójcik

Figure 5: Cumulative number of Retina spikes in each ms of simulation reaching
40000 before the end of simulation time of 1 second

Table 1: Euclidean distance between vectors of states of all four LSM columns

Euclidean Distance Column 1 Column 2 Column 3 Column 4
Column 1 0 3.822376 4.308967 4.375152
Column 2 3.822376 0 1.556321 7.617872
Column 3 4.308967 1.556321 0 8.062106
Column 4 4.375152 7.617872 8.062106 0

cause we confirm the liquid computing abilities of neural microcircuits. We observe
that the spiking pattern of each of the four columns is slightly different, what is
numerically expressed in the distance values calculated for each pair of columns.

We simulated a single second of this simple visual system in 20000 steps. We
measured that in the current setup of the system (the simulation time step of
0.00005 second) that a single second of simulation required 285 CPU seconds (4:45
min). Each LMS column generated on average 1.34 MB of spiking data, with retina
adding additional 113 KB.

Apart from gathering the spiking times for each neuron, our system can also
measure cell membrane potential for each neural cell in the simulation. In this
approach, the amount of data generated increases approximately by 165 times, so
the additional stream generated in this way reaches 1 GB per second. We have not
noticed any unexpected changes of the data stream over the time of simulations.

Liquid State Machines for Real-Time Neural Simulations 241

Figure 6: Visual signal processing in the first and second LSM columns of our
system

242 K. Chlasta, G. M. Wójcik

Figure 7: Visual signal processing in the third and fourth LSM columns of our
system

Liquid State Machines for Real-Time Neural Simulations 243

4 Discussion

In this paper we demonstrated a proof-of-concept for a liquid state machine, as
a bio-inspired computational technique in simulation of a visual system. We report
the spike numbers for a complex artificial neural network built of a single 2D retina,
and four 3D LSM columns. We simulated 4880 Hodgkin-Huxley neurons organised
in layers resembling cortical microcircuits. Application of liquid computing ideas
[16] allowed to decrease the number of neurons in the model constructed.

Our results prove that the proposed architecture based on four HHLSMs
columns reacts to a visual stimulus in an expected manner, with each of the four
LSM columns exhibiting a slightly different spiking pattern. We simulated a single
second of the visual system, and that single second required required 285 CPU
seconds.

The key limitation of our approach was lack of computational resources to per-
form longer, and more complex simulation. In future we would also like to use the
parallel version of GENESIS to spread the processing across all available CPUs.
We believe that the simulation time can be significantly shortened by using a more
powerful computational cluster. We expect that our multi-column LSM model can
be scaled into a parallel multiprocessor simulation, as the current architecture al-
lows a single column to be simulated on a single processor for optimal performance.

Our model is flexible. The Retina can be formed of other shapes. A single column
can be connected to a single retinal cell, or a patch of 4 (2 × 2), 16 (4 × 4), 256
(16×16), or more cells, depending on the required stimulus size, and the number of
CPUs available. For the proposed retina size (28x28), if each retina cell is connected
to a single corresponding HHLSM column, the model can conduct a simulation of
about 802 thousand Hodgkin-Huxley neural cells. The current size of retina allows
processing of input patterns generated by viewing a MINST [6] dataset, which is a
very popular baseline among computer vision researchers.

Apart from neuronal simulations, another possible application of our system
could be in automating the operations of the industrial systems, such as the one
described in [12]. While evaluating the system, the authors [21] used Electroen-
cephalography (EEG) measurements with EMOTIV EPOC+ 14-Channel Wireless
Headset. They reported that the highest increase in mental involvement of the hu-
man operator happened during the data supplementation phase, where the value
of the investigated mental load reached 90%. Our system could reduce the degree
of the operator’s mental involvement by providing an intelligent ’robotic eye’. The
topology of the container mentioned in [12] allows the system to use our LSM model
without any modifications of the retina.

Authors believe that much more realistic models could be developed on the
basis of the modelling work presented in this paper. One of the directions of fur-
ther development of the model proposed could be to include the lateral inhibitory
connections between the LSM columns. Inhibitory connections are very common
in the neocortex, and lateral inhibition has been shown to play an important role
in sharpening the distinctions between similar inputs [5]. Additionally, lateral in-
hibition plays an important role in population coding, stabilising the mean field
potential, and greatly improving the ability of a group of neurons to accurately
represent a given stimulus by creating negatively correlated firing patterns [7]. As

244 K. Chlasta, G. M. Wójcik

such, this feature could enhance pattern recognition capabilities of the system, and
it is worth including in next version of the model.

These models could be analysed in real time by streaming readout to the Apache
Spark cluster, and pushed out to designated databases or live dashboards.

5 Conclusions

To conclude, the proposed LSM architecture coupled with Apache Spark allows
for the analysis and visualisation of results for an ever increasing number of simu-
lated neurons, potentially reaching even several millions of neural cells. Adopting
the proposed building blocks extends the toolbox of neuroinformatics. It can lead
to the creation of even more sophisticated, higher fidelity models and open new
possibilities to observe dynamics of such a visual system in real time. Following
Maass’s [16] ideas and applying a readout for liquid state analysis we can also
imagine some new expert-devices able to classify geometrically different and time
variable patterns. Therefore, implementing neural models and arranging a proper
LSM architecture of the simulated cortex can lead to a better understanding of
both machine vision and pattern recognition phenomena taking place in the real
brains.

Acknowledgement

We thank Michael Connolly for proofreading.

References

[1] A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes,
and R. Yuste. The brain activity map project and the challenge of functional
connectomics. Neuron, 74(6):970–974, 2012.

[2] E. Bisong. Google colaboratory. In Building Machine Learning and Deep
Learning Models on Google Cloud Platform, pages 59–64. Springer, 2019.

[3] J. M. Bower and D. Beeman. The book of GENESIS: exploring realistic neu-
ral models with the GEneral NEural SImulation System. Springer Science &
Business Media, 2012.

[4] J. M. Bower and D. Beeman. The book of GENESIS: exploring realistic neu-
ral models with the GEneral NEural SImulation System. Springer Science &
Business Media, 2012.

[5] E. M. Callaway. Local circuits in primary visual cortex of the macaque monkey.
Annual review of neuroscience, 21(1):47–74, 1998.

[6] L. Deng. The mnist database of handwritten digit images for machine learning
research [best of the web]. IEEE Signal Processing Magazine, 29(6):141–142,
2012.

Liquid State Machines for Real-Time Neural Simulations 245

[7] S. Durrant and J. Feng. Negatively correlated firing: the functional meaning
of lateral inhibition within cortical columns. Biological cybernetics, 95(5):431–
453, 2006.

[8] A. Gupta, Y. Wang, and H. Markram. Organizing principles for a diversity of
gabaergic interneurons and synapses in the neocortex. Science, 287(5451):273–
278, 2000.

[9] M. Helias, S. Kunkel, G. Masumoto, J. Igarashi, J. M. Eppler, S. Ishii, T. Fukai,
A. Morrison, and M. Diesmann. Supercomputers ready for use as discovery
machines for neuroscience. Frontiers in neuroinformatics, 6:26, 2012.

[10] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal
of physiology, 117(4):500–544, 1952.

[11] A. Holden, J. Tucker, and B. Thompson. Can excitable media be considered as
computational systems? Physica D: Nonlinear Phenomena, 49(1-2):240–246,
1991.

[12] M. Jabłoński, R. Tadeusiewicz, A. Piłat, J. Walczyk, P. Tylek, J. Szczepaniak,
F. Adamczyk, M. Szaroleta, T. Juliszewski, and P. Kiełbasa. Vision-based as-
sessment of viability of acorns using sections of their cotyledons during auto-
mated scarification procedure. Bio-Algorithms and Med-Systems, 14(1), 2018.

[13] J. Jordan, T. Ippen, M. Helias, I. Kitayama, M. Sato, J. Igarashi, M. Diesmann,
and S. Kunkel. Extremely scalable spiking neuronal network simulation code:
from laptops to exascale computers. Frontiers in neuroinformatics, 12:2, 2018.

[14] S. Kunkel, T. C. Potjans, J. M. Eppler, H. E. E. Plesser, A. Morrison, and
M. Diesmann. Meeting the memory challenges of brain-scale network simula-
tion. Frontiers in neuroinformatics, 5:35, 2012.

[15] R. Lent, F. A. Azevedo, C. H. Andrade-Moraes, and A. V. Pinto. How many
neurons do you have? some dogmas of quantitative neuroscience under revi-
sion. European Journal of Neuroscience, 35(1):1–9, 2012.

[16] W. Maass, T. Natschläger, and H. Markram. Real-time computing without
stable states: A new framework for neural computation based on perturbations.
Neural computation, 14(11):2531–2560, 2002.

[17] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Free-
man, D. Tsai, M. Amde, S. Owen, et al. Mllib: Machine learning in apache
spark. The Journal of Machine Learning Research, 17(1):1235–1241, 2016.

[18] T. Natschläger, W. Maass, and H. Markram. The "liquid computer": A novel
strategy for real-time computing on time series. Special issue on Foundations
of Information Processing of TELEMATIK, 8(ARTICLE):39–43, 2002.

[19] C. E. Shannon. A universal turing machine with two internal states. Automata
studies, 34:157–165, 1956.

246 K. Chlasta, G. M. Wójcik

[20] R. Tadeusiewicz. Neural networks as a tool for modeling of biological systems.
Bio-Algorithms and Med-Systems, 11(3):135–144, 2015.

[21] R. Tadeusiewicz, P. Tylek, F. Adamczyk, P. Kiełbasa, M. Jabłoński,
Z. Bubliński, J. Grabska-Chrząstowska, Z. Kaliniewicz, J. Walczyk, J. Szczepa-
niak, et al. Assessment of selected parameters of the automatic scarification
device as an example of a device for sustainable forest management. Sustain-
ability, 9(12):2370, 2017.

[22] P. Wijesinghe, G. Srinivasan, P. Panda, and K. Roy. Analysis of liquid en-
sembles for enhancing the performance and accuracy of liquid state machines.
Frontiers in neuroscience, 13:504, 2019.

[23] G. M. Wojcik and W. A. Kaminski. Liquid computations and large simula-
tions of the mammalian visual cortex. In International Conference on Com-
putational Science, pages 94–101. Springer, 2006.

[24] G. M. Wojcik and W. A. Kaminski. Liquid state machine and its separation
ability as function of electrical parameters of cell. Neurocomputing, 70(13-
15):2593–2597, 2007.

[25] T. Yorozu, M. Hirano, K. Oka, and Y. Tagawa. Electron spectroscopy studies
on magneto-optical media and plastic substrate interface. IEEE translation
journal on magnetics in Japan, 2(8):740–741, 1987.

[26] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. In 9th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI} 12), pages
15–28, 2012.

[27] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, et al. Spark:
Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

[28] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized
streams: Fault-tolerant streaming computation at scale. In Proceedings of the
twenty-fourth ACM symposium on operating systems principles, pages 423–
438, 2013.

[29] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng,
J. Rosen, S. Venkataraman, M. J. Franklin, et al. Apache spark: a unified
engine for big data processing. Communications of the ACM, 59(11):56–65,
2016.

Author index

Bartosik, Bernadetta 223
Berezowski, Filip 77
Bielecki, Bartłomiej 141
Bylina, Beata 155, 167
Bylina, Jarosław 77, 167

Chlasta, Karol 233
Chromiak, Michał 59
Codello, Ireneusz 43

Klisowski, Michał 95
Kobus, Adam 43
Krajka, Andrzej 141
Księżopolski, Bogdan 111
Kuniszyk-Jóźkowiak, Wiesława 43
Kuzdraliński, Adam 111

Miśkiewicz, Marek 111

Olszewski, Paweł 129

Panas, Ewelina 187
Piekarz, Monika 9
Potiopa, Joanna 155

Rusinek, Damian 111

Stachura-Żurek, Dorota 199

Wiśniewski, Paweł 155
Wójcik, Grzegorz Marcin 43, 223, 233

Żurek, Tomasz 199

247

Maria Curie-Skłodowska University Presswydawnictwo.umcs.eu

The chapters deal with:

 modern cryptography;

 more tradi�onal approaches to data processing – like (geographical) data base
systems and paralleliza�on;

The book presents the latest research conducted at Marie Curie-Skłodowska
University in Lublin – or in collabora�on with its staff – in the broadly understood
field of computer science.

 industrial computer science issues;

 social qua�ons related to informa�on technology;
 ethical/philosophical issues of ar�ficial inteligence;

 machine learning and automa�on of detec�on in various data sets;

 some research on the func�oning of the human brain and nervous system and
its simula�on possibility.

The book is addressed to all those who want to become familiar with the areas of
research conducted by employees of the Maria Curie-Skłodowska University (in
par�cular, the Ins�tute of Computer Science at the Faculty of Mathema�cs,
Physics and Computer Science). Thanks to concise and clear descrip�ons of many
different issues related to the broadly understood computer science, it will be
especially useful for IT/CS students and scien�sts as well as research staff of
enterprises.

9 7 8 8 3 2 2 7 9 5 3 0 9

	Contents
	Preface
	A Brief Review on Supervised Machine Learning
	Introduction
	The idea of supervised machine learning
	Data preparation
	Data selection
	Data transformation
	Coding
	Generalization
	Rounding
	Discretization
	Scaling

	Review of selected methods of supervised machine learning
	Artificial neural network
	Linear regression models
	Evaluation of machine learning models
	Evaluation of classification models
	Evaluation of regression models

	Python machine learning examples

	Methods of preventing overfitting and underfitting

	Automatic Syllable Repetition Detection Methods in Continuous Speech
	Introduction
	Related work

	Methodology
	First attempt
	Algorithm
	Input data
	Preprocessing
	Feature extraction
	Segmentation
	Pairing
	Formants extraction
	Clusterisation
	Distance measuring
	Classification

	Results of the first attempt
	Second attempt
	Algorithm
	Input data
	Feature extraction
	Segmentation
	Correlation obtaining
	Syllables pairing
	Classification

	Results of the second attempt

	Summary

	Exploring Recent Advancements of Transformer Based Architectures in Computer Vision
	Introduction
	Eliminating recurrence in machine translation
	Reducing the inductive bias with transformers

	Replacing recurrence for object detection
	Advantages of Transformer based object detection
	Bipartite matching loss

	General architecture of detection transformer
	Performance comparison and potential improvements

	Replacing CNNs in computer vision
	Vision Transformer architecture
	Advantages of using only Transformer for vision
	ViT performance comparison
	Self-supervision in vision transformer

	Summary

	Automating the Comparison of Areas and Data of Administrative Units From Different…
	Introduction
	Methodology of the algorithm
	Recreating the geometry in the program
	Comparing the geometry of administrative units
	Thresholds for further calculations
	Population calculations

	Tests and summary

	Some Computational Aspects of Graph-Based Cryptography
	Introduction
	Algebraic graphs over finite commutative rings
	Finite commutative rings
	Ring of integers modulo p
	Finite fields
	Boolean rings

	D(n, K) and A(n, K) graph families
	Software representation of algebraic graphs

	Symmetric graph-based encryption scheme
	Asymmetric graph-based encryption schemes
	Basic asymmetric schemes and their algebraic cryptanalysis
	Public key generation
	Cryptanalysis
	Modified public-key cryptosystems

	Conclusion

	DNA Based Cryptographic Key Storage System With a Simple and Automated Method…
	Introduction
	Bio-cryptography
	The method
	DNA storage data structure
	Detailed structure of data strand components
	Binding sites
	DNA fragments selection procedure
	Primers generator
	Extended verifications and tests
	The selection of primers
	DNA strands building

	Keys reading procedure

	The experiment
	Conclusions and future work

	Comparative Analysis of Selected Anthropomorphic Grippers Constructions
	Introduction
	The human hand
	The human hand kinematic model

	AR10 Humanoid Robot Hand
	AR10 kinematic model

	Schunk SVH
	SVH kinematic model

	Shadow Dexterous Hand
	SDH kinematic model

	Shadow Dexterous Hand Lite
	SDHL kinematic model

	Comparison
	Conclusion

	Data Mining Procedures in the Oil Production Prediction for Gas Lifted Wells
	Introduction
	Motivations and contributions
	Data preparation
	Models
	The algorithm
	The conclusions

	Spatial Databases and Their Use in Spatial Web Applications Based on the Exemplary…
	Introduction
	Methodology
	Database
	Relational databases
	Spatial databases
	PostreSQL/PostGIS
	Python
	Flask
	Peewee

	Results
	Conclusion

	Nested Loop Transformations on Multi- and Many-Core Computers With Shared Memory
	Introduction
	WZ factorization
	Algorithms and implementations
	Sequential algorithms and loop interchange
	Parallelization and vectorization
	Strip-mining and loop tiling

	Testing methodology
	Numerical experiments
	Previous parallel implementations
	Matrix layouts and loop interchange
	Strip-mining and loop tiling

	Conclusion

	Functioning of Transnational Civil Society Organisations (TCSOs) in Cyberspace
	Introduction
	Determinants of the virtualisation of TCSOs' activities
	Functions performed by TCSOs in cyberspace
	Case study
	Summary

	Applying Ethics to Autonomous Agents
	Introduction
	Contribution
	Ethical theories
	Consequentialism
	Deontology
	Virtue ethics

	GVR model
	Goals
	Inference rules
	Inference mechanism

	GVR and various ethical theories
	GVR and consequentialism
	GVR and virtue ethics

	Discussion
	Moral philosophy and the model
	Consequentialist ethics
	Virtue ethics

	Existing approaches to modeling ethical decision making
	The problem of uncertainty

	Conclusions

	Assessment of Attractiveness and Trust in Relation to Personality Traits…
	Introduction
	Tools
	Procedure
	Summary

	Liquid State Machines for Real-Time Neural Simulations
	Introduction
	Liquid State Machines
	Real-time processing

	Materials and methods
	Signal processing model
	Experimental setting

	Results
	Discussion
	Conclusions

	Author index

